
reNgine-ng: Technical Architecture

High-Level Architecture

System Architecture Diagram

%%{init: {'theme':'base', 'themeVariables': { 'fontSize':'16px'}}}%%

graph LR

 subgraph Client["Client Layer"]

 UI["Web Browser
UI"]

 API["API Clients
Automation"]

 end

 subgraph Gateway["Azure Gateway"]

 LB["Application Gateway
SSL/TLS + WAF"]

 end

 subgraph App["Application Layer - VM (Docker)"]

 NGINX["Nginx
Reverse Proxy"]

 WEB["Django Web
Gunicorn+Uvicorn
API+WebSocket"]

 WORKER["Celery Workers
5-30 Concurrent"]

 BEAT["Celery Beat
Scheduler"]

 OLLAMA["Ollama LLM
GPU AI
(Optional)"]

 end

 subgraph Data["Data Layer - Azure PaaS"]

 PG[("PostgreSQL
Flexible Server")]

 REDIS[("Redis Cache
Premium")]

 BLOB["Blob Storage
Screenshots"]

 end

 subgraph Tools["Security Tools"]

 SCANTOOLS["Tools Layer
Subfinder, Nuclei
Nmap, FFUF"]

 end

 subgraph External["External APIs"]

 OPENAI["OpenAI
GPT API"]

 NOTIFY["Notifications
Slack/Discord"]

 NETLAS["Netlas
OSINT"]

Detailed Scan Execution Flow

 end

 subgraph Monitor["Azure Security"]

 MON["Azure Monitor
Insights"]

 KV["Key Vault
Secrets"]

 DEF["Defender
Security"]

 end

 UI --> LB

 API --> LB

 LB --> NGINX

 NGINX --> WEB

 WEB --> PG

 WEB --> REDIS

 WEB --> BLOB

 WEB --> WORKER

 WEB --> OLLAMA

 WORKER --> REDIS

 WORKER --> PG

 WORKER --> BLOB

 WORKER --> SCANTOOLS

 WORKER --> OLLAMA

 WORKER --> OPENAI

 WORKER --> NOTIFY

 WORKER --> NETLAS

 BEAT --> REDIS

 BEAT --> PG

 WEB --> KV

 WORKER --> KV

 WEB -.-> MON

 WORKER -.-> MON

 NGINX -.-> MON

 classDef azure fill:#0078D4,stroke:#003366,stroke-width:3px,color:#ff

 classDef app fill:#28a745,stroke:#1e7e34,stroke-width:3px,color:#fff,

 classDef data fill:#ffc107,stroke:#ff8c00,stroke-width:3px,color:#000

 classDef external fill:#6c757d,stroke:#495057,stroke-width:3px,color:

 class LB,PG,REDIS,BLOB,MON,KV,DEF azure

 class WEB,WORKER,BEAT,NGINX,OLLAMA,SCANTOOLS app

 class OPENAI,NOTIFY,NETLAS external

%%{init: {'theme':'base', 'themeVariables': { 'fontSize':'15px', 'fontFam

sequenceDiagram

 autonumber

 participant U as User

 participant W as Web UI

 participant D as Database

 participant Q as Queue

 participant WK as Worker

 participant T as Tools

 participant AI as AI/LLM

 participant N as Notify

 participant S as Storage

 U->>W: Initiate Scan

 W->>D: Create Record

 W->>Q: Enqueue Task

 W-->>U: Scan ID + WebSocket

 Q->>WK: Dispatch Task

 WK->>D: Status: In Progress

 WK-->>W: WS: Started

 Note over WK,T: Phase 1: Subdomain Discovery

 WK->>T: Run Subfinder/CTFR

 T-->>WK: Subdomain List

 WK->>D: Store Subdomains

 WK-->>W: WS: 10 Found

 Note over WK,T: Phase 2: Port Scanning

 WK->>T: Run Nmap

 T-->>WK: Open Ports

 WK->>D: Store Ports

 WK-->>W: WS: 25 Discovered

 Note over WK,T: Phase 3: Crawling

 WK->>T: Run Gospider/Katana

 T-->>WK: URLs/Endpoints

 WK->>D: Store Endpoints

 WK-->>W: WS: 150 Found

 Note over WK,T: Phase 4: Vuln Scan

 WK->>T: Run Nuclei

 T-->>WK: Vulnerabilities

 WK->>D: Store CVE/CWE

Data Model Architecture

%%{init: {'theme':'base', 'themeVariables': { 'fontSize':'14px'}}}%%

erDiagram

 ORGANIZATION ||--o{ DOMAIN : contains

 DOMAIN ||--o{ SUBDOMAIN : has

 SUBDOMAIN ||--o{ ENDPOINT : exposes

 SUBDOMAIN ||--o{ IP_ADDRESS : resolves_to

 SUBDOMAIN }o--|| SCREENSHOT : has

 ENDPOINT ||--o{ VULNERABILITY : has

 VULNERABILITY }o--o{ CVE : references

 VULNERABILITY }o--o{ CWE : categorized_by

 VULNERABILITY }o--o{ TAG : tagged_with

 SUBDOMAIN ||--o{ PORT : listens_on

 PORT }o--|| TECHNOLOGY : runs

 SCAN_HISTORY ||--o{ SUBDOMAIN : discovers

 WK-->>W: WS: 8 Found

 Note over WK,T: Phase 5: Screenshots

 WK->>T: Run Eyewitness

 T-->>WK: PNG Files

 WK->>S: Upload to Blob

 S-->>WK: URLs

 WK->>D: Link Screenshots

 Note over WK,AI: Phase 6: AI Analysis

 WK->>AI: Analyze Surface

 AI-->>WK: AI Report

 WK->>D: Store Analysis

 WK->>D: Status: Complete

 WK->>N: Trigger Alert

 N-->>U: Summary

 WK-->>W: WS: Complete

 W-->>U: Show Results

 U->>W: Generate PDF

 W->>D: Query Findings

 W->>S: Fetch Media

 W-->>U: Download PDF

 SCAN_HISTORY ||--o{ ENDPOINT : finds

 SCAN_HISTORY ||--o{ VULNERABILITY : identifies

 SCAN_HISTORY }o--|| ENGINE_TYPE : uses

 PROJECT ||--o{ DOMAIN : manages

 PROJECT ||--o{ USER : grants_access

 ORGANIZATION {

 int id PK

 string name

 text description

 datetime created_at

 }

 DOMAIN {

 int id PK

 int org_id FK

 string name

 datetime created_at

 }

 SUBDOMAIN {

 int id PK

 int domain_id FK

 string name

 string http_url

 string status

 bool is_important

 jsonb tech

 datetime found_at

 }

 ENDPOINT {

 int id PK

 int subdomain_id FK

 string url

 string method

 string content_type

 int length

 jsonb patterns

 datetime found_at

 }

 VULNERABILITY {

 int id PK

 string name

 string severity

 text description

 text remediation

 text references

 bool open_status

 bool h1_report_id

 datetime found_at

 }

 SCAN_HISTORY {

 int id PK

 int domain_id FK

 int engine_id FK

 string scan_type

 string status

 datetime start_time

 datetime stop_time

 int subdomain_cnt

 int endpoint_cnt

 int vuln_cnt

 }

 PROJECT {

 int id PK

 string name

 text description

 string slug

 }

Technology Stack

Backend Framework & Runtime

Component Technology Version Purpose

Web
Framework Django 3.2.25 Core application framework, ORM, admin interface

WSGI/ASGI
Server

Gunicorn +
Uvicorn
Workers

23.0.0 +
0.30.6

Modern ASGI architecture - Production
HTTP/WebSocket server with async capabilities

Component Technology Version Purpose

ASGI
Framework

Django
Channels 3.0.5 Native async support and WebSocket handling

API Framework Django REST
Framework 3.14.0 RESTful API implementation

API
Documentation drf-yasg 1.21.7 OpenAPI/Swagger spec generation

Task Queue Celery 5.4.0 Distributed task execution

Task Scheduler Django Celery
Beat 2.6.0 Periodic task scheduling (cron-like)

WebSocket Django
Channels 3.0.5 Real-time bidirectional communication

Async Workers Gevent 24.2.1 Concurrent greenlet-based execution

Frontend Technologies

Component Technology Purpose

UI Framework Bootstrap 4/5 Responsive design system

JavaScript Vanilla JS + jQuery DOM manipulation and AJAX

Data Tables DataTables.js Advanced table rendering with search/sort/filter

Charts Chart.js Dashboard visualizations and analytics

Real-Time WebSocket API Live scan progress updates

Markdown Marked.js Rich text rendering for notes

Database & Caching

Component Technology Version Purpose

Primary Database PostgreSQL 12+ Relational data storage for all entities

Message Broker Redis 5.0.3+ Celery task queue backend

Cache Backend Redis 5.0.3+ Session storage and query caching

ORM Django ORM 3.2.25 Database abstraction and migrations

Reconnaissance Tool Stack

Category Tools PurposeCategory Tools Purpose

Subdomain
Discovery

Subfinder, CTFR, Sublist3r, TLSX, OneForAll,
Netlas, Amass

Passive and active subdomain
enumeration

Port Scanning Nmap, Naabu Service discovery and banner
grabbing

HTTP Crawling Gospider, Hakrawler, Waybackurls, Katana,
GAU

URL discovery and endpoint
enumeration

Vulnerability
Scanning

Nuclei (3000+ templates), Dalfox (XSS),
CRLFuzz, S3Scanner

Automated vulnerability
detection

Directory
Fuzzing FFUF Content discovery via bruteforce

Screenshot Eyewitness Visual reconnaissance

WAF Detection Wafw00f Web application firewall
identification

CMS Detection CMSeek Content management system
fingerprinting

OSINT theHarvester, LinkedInt, h8mail Email/employee enumeration

AI/LLM Integration

Service Models Deployment Purpose

OpenAI GPT-3.5-turbo, GPT-4 Cloud API Vulnerability analysis and
reporting

Ollama Mistral, Llama2, Neural Chat,
CodeLlama Self-hosted On-premise AI inference (air-

gapped)

GPU
Support NVIDIA CUDA, AMD ROCm Local

hardware Accelerated model inference

Container & Orchestration

Component Technology Purpose

Containerization Docker 20.10+ Application packaging

Orchestration Docker Compose Multi-container
deployment

Base Images python:3.10-alpine, postgres:12.19-alpine, redis:alpine,
nginx:alpine Minimal attack surface

Component Technology Purpose

Registry GitHub Container Registry (ghcr.io) Pre-built image
distribution

Architectures AMD64, ARM64 Multi-platform support

Security & Authentication

Component Technology Purpose

Authentication Django Auth + Session User login and session management

Authorization Django Permissions + Custom
RBAC

Role-based access
(Admin/Auditor/Viewer)

Password
Storage PBKDF2 SHA256 Secure password hashing

SSL/TLS Nginx with OpenSSL HTTPS encryption

CORS django-cors-headers Cross-origin request handling

Key Azure Services (Recommended Deployment)

Compute

Azure Service Purpose Configuration

Azure Virtual Machines
(Primary)

Recommended production
deployment Standard_D8s_v3 (8 vCPU, 32 GB RAM)

Azure VM - GPU-
Enabled

AI-powered report generation
with Ollama

Standard_NC6s_v3 (6 vCPU, 112 GB
RAM, 1x V100 GPU)

Azure VM - Entry Level Small-scale or development
deployment Standard_D4s_v3 (4 vCPU, 16 GB RAM)

Azure Container
Instances (ACI)

Optional: Quick deployment for
testing 4 vCPU, 16 GB RAM per container group

Azure Kubernetes
Service (AKS)

Optional: Enterprise-scale
orchestration 3-10 node cluster (Standard_D4s_v3)

Azure Container
Registry (ACR)

Private image storage
(optional) Premium tier for geo-replication

Data Services

Azure Service Purpose Configuration

Azure Database for
PostgreSQL Managed database Flexible Server, 4 vCore, 32 GB RAM,

128 GB SSD

Azure Cache for Redis Managed Redis Premium P1 (6 GB) with persistence

Azure Blob Storage Object storage for
screenshots/reports Hot tier, LRS redundancy

Azure Files Shared storage for tool configs Premium tier for low latency

Networking & Security

Azure Service Purpose Configuration

Azure Application Gateway Load balancer + WAF WAF v2, SSL termination

Azure Virtual Network Network isolation Private subnet for backend services

Azure Key Vault Secret management Store DB passwords, API keys

Azure Private Link Private connectivity Secure DB and Redis access

Monitoring & Operations

Azure Service Purpose Configuration

Azure Monitor Metrics and logging Container Insights for AKS

Application Insights APM and tracing Django middleware integration

Log Analytics Workspace Centralized logging 30-day retention

Azure Advisor Cost and performance optimization Enabled by default

Proposed Azure Marketplace Offer Type

Recommendation: Virtual Machine-Based Solution Application

Offer Structure: Azure VM Solution Template with Docker Compose

Primary Deployment Options:

1. Option 1: Virtual Machine with Docker Compose - PRIMARY DEPLOYMENT SOLUTION
(Recommended for All Deployments)

Pros:

Fastest time-to-value (10-minute deployment)
Familiar deployment model for most IT teams

Full control over Docker container orchestration
Easy migration from on-premise environments

Single VM simplifies networking and monitoring

Docker Compose provides reliable multi-container management
Minimum Requirements:

8GB RAM or more (recommended: 16GB for production workloads)
4 vCPU or more (recommended: 8 vCPU for high concurrency)

100GB SSD for database and scan results storage

Ubuntu 22.04 LTS or similar Linux distribution
Recommended Azure VM SKUs:

Standard_D4s_v3 (4 vCPU, 16GB RAM) - Small to medium deployments
Standard_D8s_v3 (8 vCPU, 32GB RAM) - Production deployments

Standard_D16s_v3 (16 vCPU, 64GB RAM) - Enterprise/high-volume deployments

Deployment Method: ARM template deploys VM with Docker and Docker Compose pre-
configured

Ideal For: Teams of 1-50 users, all Azure deployments from POC to production workloads

2. Option 2: GPU-Enabled Virtual Machine - RECOMMENDED FOR AI-POWERED REPORTING

GPU Acceleration for AI Reports: Enhanced AI analysis and report generation with local
LLM inference

Recommended Azure VM SKUs:

Standard_NC6s_v3 (6 vCPU, 112GB RAM, 1x V100 GPU) - AI report generation
Standard_NC4as_T4_v3 (4 vCPU, 28GB RAM, 1x T4 GPU) - Cost-effective AI option

Use Cases:
Organizations requiring AI-powered vulnerability analysis

Automated report generation with GPT-quality insights

Air-gapped environments needing local LLM inference (Ollama)
High-volume scanning with intelligent prioritization

Cost Benefit: Local LLM vs. OpenAI API ($0.50/report local vs. $2-5/report cloud API)
Deployment Method: Same ARM template with GPU-enabled VM SKU selection

Ideal For: Security teams requiring advanced AI analysis, enterprises with strict data

sovereignty requirements

Optional Advanced Deployment Options (For Special Use Cases)

3. Option 3: Azure Container Instances (ACI) - For Development/Testing Only

Pros:

Pay-per-second billing

No VM management overhead
Automatic resource allocation

Cons:
Limited to 4 vCPU per container group

Less control over container orchestration

Higher costs for 24/7 workloads vs. VMs
Ideal For: Development environments, temporary testing, cost-sensitive POCs

4. Option 4: Azure Kubernetes Service (AKS) - For Enterprise-Scale Multi-Tenant Deployments

Pros:

Unlimited scalability

Advanced orchestration (auto-scaling, self-healing)
Multi-region deployment

GPU node pools for AI workloads
Cons:

Requires Kubernetes knowledge

Higher operational complexity
More expensive for small-scale deployments

Overkill for most use cases
Ideal For: Only for large MSPs/MSSPs with 100+ concurrent clients, organizations already

standardized on Kubernetes, or multi-region HA requirements
Note: Most organizations should use VM deployment for simplicity and cost-effectiveness

Recommended Marketplace Listing: Solution Template + Managed Application

Why This Approach:

Solution Template: Provides ARM template for one-click deployment of:

Azure Container Instances or AKS cluster

Azure Database for PostgreSQL

Azure Cache for Redis
Azure Blob Storage

Azure Key Vault
Azure Application Gateway

Pre-configured networking and security

Managed Application: Optional managed service tier where:

Customer deploys to their Azure subscription (data sovereignty)

Vendor (Security Tools Alliance) can remotely manage updates and configuration
Customer retains full ownership of data and infrastructure

Enables "Support + Managed Services" revenue stream

Monetization Strategy

Tier Model Price What's Included

Community BYOL (Bring Your Own
License) $0 Self-service deployment, community

support

Professional Annual Subscription $5,000/year Priority support, deployment assistance,
quarterly updates

Enterprise Custom Pricing $25,000+/year Managed service, SLA, custom features,
compliance packs

Azure Consumption Revenue: Microsoft shares Azure infrastructure spend (20-25% margin)

Deployment Architecture on Azure

Recommended Production Architecture (VM-Based with Optional GPU)

%%{init: {'theme':'base', 'themeVariables': { 'fontSize':'15px'}}}%%

graph LR

 subgraph Public["Public Network"]

 INET["Internet
Users"]

 end

 subgraph Azure["Azure Subscription: Customer-Owned"]

 subgraph RG["Resource Group: rengine-prod"]

 subgraph Net["Networking"]

 GW["App Gateway
WAF v2 SSL
(Optional)"]

 VN["VNet
10.0.0.0/16"]

 end

 subgraph VM["Primary VM - D8s_v3"]

 subgraph Docker["Docker Compose Stack"]

 NGX["Nginx
Proxy"]

 WEB["Django Web
Gunicorn+Uvicorn"]

 CEL["Celery Workers
5-30 Parallel"]

 BT["Celery Beat
Scheduler"]

 LPG[("Local PG
(Optional)")]

 LRD[("Local Redis
Cache/Queue")]

 end

 end

 subgraph GPU["GPU VM - NC6s_v3 (Optional)"]

 OLL["Ollama LLM
V100 GPU
AI Reports"]

 end

 subgraph PaaS["Azure PaaS (Optional)"]

 PG[("PostgreSQL
Flexible")]

 RD[("Redis
Premium")]

 BL["Blob Storage
Media"]

 KV["Key Vault
Secrets"]

 end

 subgraph Mon["Monitoring"]

 MN["Monitor
Insights"]

 end

 end

 end

 INET --> GW

 GW --> NGX

 INET -.->|Direct| NGX

 NGX --> WEB

 WEB --> LPG

 WEB --> LRD

 WEB -.->|Opt| PG

 WEB -.->|Opt| RD

 WEB -.->|Opt| BL

 WEB -.->|Opt| KV

 CEL --> LPG

 CEL --> LRD

 CEL -.->|Opt| PG

 CEL -.->|Opt| RD

 CEL -.->|Opt| BL

 CEL -.->|Opt| OLL

 BT --> LRD

 BT -.->|Opt| RD

 WEB -.-> MN

 CEL -.-> MN

 classDef azure fill:#0078D4,stroke:#003366,stroke-width:3px,color:#ff

 classDef vm fill:#28a745,stroke:#1e7e34,stroke-width:3px,color:#fff,f

 classDef docker fill:#2496ED,stroke:#1a73b8,stroke-width:3px,color:#f

Scalability & Performance Characteristics

Concurrency Configuration

Component Min Max Recommended Notes

Celery Workers 5 30 15
Configurable via
MIN_CONCURRENCY/MAX_CONCURRENCY env
vars

Web Server
(Gunicorn) 4 32 8 Workers = (2 × CPU cores) + 1

Database
Connections 20 500 100 PostgreSQL max_connections

Redis
Connections 50 1000 200 Redis maxclients

Estimated Performance Metrics

Workload Configuration Targets/Day Azure Cost
(Est.)

Individual/Small
Team VM (D4s_v3: 4 vCPU, 16GB) + Local DB/Redis 50 domains ~$140/month

Medium Team VM (D8s_v3: 8 vCPU, 32GB) + Local DB/Redis 200 domains ~$280/month

Large Team with AI VM (D8s_v3) + GPU VM (NC6s_v3) + Optional
PaaS

500+
domains ~$1,200/month

Enterprise VM (D16s_v3: 16 vCPU, 64GB) + GPU +
Managed PaaS

1000+
domains ~$1,800/month

Cost Comparison vs. Container Orchestration:

VM deployment: 60-70% cost savings vs. AKS for equivalent workloads

GPU VM for AI: $800/month (NC6s_v3) vs. OpenAI API costs of $500-1500/month for similar

volume
Managed PaaS services are optional - local containers reduce costs further

 classDef gpu fill:#76B900,stroke:#5a8c00,stroke-width:3px,color:#fff,

 class GW,VN,PG,RD,BL,KV,MN azure

 class NGX,WEB,CEL,BT,LPG,LRD docker

 class OLL gpu

Security Architecture

Defense-in-Depth Strategy

1. Network Layer

Azure NSGs for firewall rules
Private endpoints for PaaS services (no public internet exposure)

Application Gateway WAF for OWASP Top 10 protection

2. Application Layer

Django security middleware (CSRF, XSS, clickjacking protection)

Role-based access control (RBAC)
Project-based data isolation

3. Data Layer

Encryption at rest (Azure Storage Service Encryption)
Encryption in transit (TLS 1.2+)

Automated backups with point-in-time restore

4. Secrets Management

Azure Key Vault for all credentials

Managed Identity for passwordless authentication
No hardcoded secrets in containers

5. Monitoring & Compliance

Azure Defender for Containers

Security Center recommendations

Audit logging to Log Analytics

Migration Path from On-Premise to Azure

Phase 1: VM Deployment (1-2 hours)

Deploy Docker Compose to Azure VM using ARM template

Minimal configuration required (environment variables only)

Instant production-ready deployment

Phase 2: GPU Integration (Optional - 1 day)

Add GPU-enabled VM for AI-powered reporting

Deploy Ollama service for local LLM inference
Configure Django to use GPU VM for report generation

Phase 3: Managed PaaS Enhancement (Optional - 1 week)

Optionally migrate PostgreSQL to Azure Database for PostgreSQL
Optionally migrate Redis to Azure Cache for Redis

Optionally move screenshots to Azure Blob Storage
Update connection strings as needed

Note: Local containers are sufficient for most deployments

Phase 4: Enterprise Features (Optional - Ongoing)

Add Application Gateway + WAF for enhanced security

Implement Azure Monitor alerts and dashboards
Configure automated backups and DR

Add Azure Key Vault for secrets management

Advanced Phase (Only for Large MSPs): Container Orchestration

For organizations with 100+ concurrent clients, consider AKS

Requires Kubernetes expertise and significantly higher costs
Most organizations should remain on VM deployment

Integration Points for Azure Ecosystem

Current Capabilities

Azure Active Directory: Can integrate via SAML/OIDC (requires custom development)

Azure DevOps: CI/CD pipelines for automated deployment
Azure Monitor: Custom metrics and logging (via Python SDK)

Azure Key Vault: Secrets injection via init containers

Future Enhancements (Marketplace Roadmap)

Native AAD SSO integration

Azure Sentinel integration for SIEM correlation

Azure Front Door for global deployment
Azure Cost Management integration for usage tracking

