reNgine-ng: Technical Architecture

High-Level Architecture

System Architecture Diagram

%% {init: {'theme':'base', 'themeVariables': { 'fontSize':'lopx'}}}%%
graph LR
subgraph Client["Client Layer"]
UI["Web Browser
UI"]
API["API Clients
Automation"]

end

subgraph Gateway["Azure Gateway"]
LB["Application Gateway
SSL/TLS + WAF"]

end

subgraph App["Application Layer - VM (Docker)"]
NGINX ["Nginx
Reverse Proxy"]
WEB["Django Web
Gunicorn+Uvicorn
API+WebSocket"]
WORKER["Celery Workers
5-30 Concurrent"]
BEAT ["Celery Beat
Scheduler"]
OLLAMA ["Ollama LLM
GPU AI
 (Optional)"]

end

subgraph Data["Data Layer - Azure PaaS"]
PG[("PostgreSQL
Flexible Server")]
REDIS[("Redis Cache
Premium")]
BLOB["Blob Storage
Screenshots"]

end

subgraph Tools["Security Tools"]
SCANTOOLS ["Tools Layer
Subfinder, Nuclei
Nmap, FFUF"]

end

subgraph External ["External APIs"]
OPENAI ["OpenAI
GPT API"]
NOTIFY["Notifications
Slack/Discord"]
NETLAS ["Netlas
0OSINT"]

end

subgraph Monitor["Azure Security"]
MON ["Azure Monitor
Insights"]
KV["Key Vault
Secrets"]
DEF ["Defender
Security"]

end

Ul --> LB

API --> 1B

LB —--> NGINX
NGINX --> WEB

WEB --> PG

WEB --> REDIS

WEB --> BLOB

WEB —--> WORKER
WEB --> OLLAMA
WORKER —--> REDIS
WORKER --> PG
WORKER --> BLOB
WORKER —--> SCANTOOLS
WORKER --> OLLAMA
WORKER —--> OPENAT
WORKER —--> NOTIFY
WORKER —--> NETLAS
BEAT --> REDIS
BEAT --> PG

WEB --> KV
WORKER —--> KV

WEB -.-> MON
WORKER -.-> MON
NGINX -.-> MON

classDef azure fill:#0078D4,stroke:#003366,stroke-width:3px,color:#ff
classDef app fill:#28a745,stroke:#le7e34,stroke-width:3px,color:#fff,
classDef data fill:#ffcl07,stroke:#f£f8c00,stroke-width:3px,color:#00C(
classDef external fill:#6c¢757d,stroke:#495057,stroke-width:3px,color:

class LB, PG,REDIS,BLOB,MON,KV, DEF azure

class WEB, WORKER, BEAT,NGINX, OLLAMA, SCANTOOLS app
class OPENAI,NOTIFY,NETLAS external

Detailed Scan Execution Flow

%% {init: {'theme':'base', 'themeVariables': { 'fontSize':'lbpx', 'fontFan

sequenceDiagram
autonumber
participant U as User
participant W as Web UI
participant D as Database
participant Q as Queue

participant WK as Worker
participant T as Tools

participant AI as AI/LLM
participant N as Notify

participant S as Storage

U->>W: Initiate Scan

W->>D: Create Record

W->>Q: Enqueue Task

W-->>U: Scan ID + WebSocket

Q->>WK: Dispatch Task
WK->>D: Status: In Progress
WK-->>W: WS: Started

Note over WK,T: Phase 1: Subdomain Discovery
WK->>T: Run Subfinder/CTFR

T-->>WK: Subdomain List

WK->>D: Store Subdomains

WK-->>W: WS: 10 Found

Note over WK, T: Phase 2: Port Scanning
WK->>T: Run Nmap

T-->>WK: Open Ports

WK->>D: Store Ports

WK-->>W: WS: 25 Discovered

Note over WK, T: Phase 3: Crawling
WK->>T: Run Gospider/Katana
T-->>WK: URLs/Endpoints

WK->>D: Store Endpoints

WK-=->>W: WS: 150 Found

Note over WK, T: Phase 4: Vuln Scan
WK->>T: Run Nuclei

T-->>WK: Vulnerabilities

WK->>D: Store CVE/CWE

WK-->>W: WS: 8 Found

Note over WK, T: Phase 5: Screenshots
WK->>T: Run Eyewitness

T-->>WK: PNG Files

WK->>S: Upload to Blob

S—=>>WK: URLs

WK->>D: Link Screenshots

Note over WK,AI: Phase 6: AI Analysis
WK->>AT: Analyze Surface

ATI-->>WK: AT Report

WK->>D: Store Analysis

WK->>D: Status: Complete
WK->>N: Trigger Alert

N-->>U: Summary

WK-->>W: WS: Complete
W-->>U: Show Results

U->>W: Generate PDF
W->>D: Query Findings
W->>S: Fetch Media
W-->>U: Download PDF

Data Model Architecture

%% {init: {'theme':'base', 'themeVariables': { 'fontSize':'l4px'}}}%%
erDiagram

ORGANIZATION ||--o{ DOMAIN : contains

DOMAIN | |--o{ SUBDOMAIN : has

SUBDOMAIN | |--of{ ENDPOINT : exposes

SUBDOMAIN | |--o{ IP ADDRESS : resolves to

SUBDOMAIN }o--|| SCREENSHOT : has

ENDPOINT | |--of{ VULNERABILITY : has

VULNERABILITY }o--of{ CVE : references
VULNERABILITY }o--o{ CWE : categorized by
VULNERABILITY }o--o{ TAG : tagged with
SUBDOMAIN | |--o{ PORT : listens_on

PORT }o--|| TECHNOLOGY : runs

SCAN HISTORY | |--o{ SUBDOMAIN : discovers

SCAN HISTORY ||--o{ ENDPOINT : finds

SCAN HISTORY | |--o{ VULNERABILITY : identifies
SCAN HISTORY }o--|| ENGINE TYPE : uses

PROJECT | |--o{ DOMAIN : manages

PROJECT ||--o{ USER : grants access

ORGANIZATION {
int id PK
string name
text description

datetime created at

DOMAIN {
int id PK
int org id FK
string name

datetime created at

SUBDOMAIN {
int id PK
int domain id FK
string name
string http url
string status
bool is important
Jjsonb tech

datetime found at

ENDPOINT {

int id PK

int subdomain id FK
string url

string method
string content type
int length

Jjsonb patterns

datetime found at

VULNERABILITY {
int id PK

string name
string severity
text description
text remediation
text references
bool open status
bool hl report id

datetime found at

SCAN HISTORY {

int id PK

int domain_ id FK
int engine id FK
string scan_type
string status
datetime start time
datetime stop time
int subdomain cnt
int endpoint cnt

int vuln cnt

PROJECT {

int id PK
string name
text description

string slug

Technology Stack

Backend Framework & Runtime

Component Technology Version
Web .
Framework Django 3.2.25
WSGI/ASGI oumicorn ¢ 23.0.0+
Server vieorn 0.30.6

Workers

Purpose

Core application framework, ORM, admin interface

Modern ASGI architecture - Production
HTTP/WebSocket server with async capabilities

Component Technology Version Purpose

ASGI Django

Framework Channels 3.0.5 Native async support and WebSocket handling

Django REST

API Framework 3.14.0 RESTful APl implementation

Framework
API drf-yas 1.21.7 OpenAPIl/Swagger spec generation
Documentation yasg o P ggerspecg
Task Queue Celery 5.4.0 Distributed task execution

Django Celery 2 6.0

Task Scheduler Periodic task scheduling (cron-like)

Beat
WebSocket Django 3.0.5 Real-time bidirectional communication
Channels
Async Workers Gevent 24.2.1 Concurrent greenlet-based execution
Frontend Technologies
Component Technology Purpose
Ul Framework Bootstrap 4/5 Responsive design system
JavaScript Vanilla JS +jQuery DOM manipulation and AJAX
Data Tables DataTables.js Advanced table rendering with search/sort/filter
Charts Chart.js Dashboard visualizations and analytics
Real-Time WebSocket API Live scan progress updates
Markdown Marked.js Rich text rendering for notes
Database & Caching
Component Technology Version Purpose
Primary Database PostgreSQL 12+ Relational data storage for all entities
Message Broker Redis 5.0.3+ Celery task queue backend
Cache Backend Redis 5.0.3+ Session storage and query caching
ORM Django ORM 3.2.25 Database abstraction and migrations

Reconnaissance Tool Stack

Category

Subdomain
Discovery

Port Scanning

HTTP Crawling

Tools

Subfinder, CTFR, Sublist3r, TLSX, OneForAll,
Netlas, Amass

Nmap, Naabu

Gospider, Hakrawler, Waybackurls, Katana,
GAU

Vulnerability Nuclei (3000+ templates), Dalfox (XSS),
Scanning CRLFuzz, S3Scanner
Dlrec.:tory FFUF
Fuzzing
Screenshot Eyewitness
WAF Detection Wafw0Of
CMS Detection CMSeek
OSINT theHarvester, LinkedInt, h8mail
Al/LLM Integration
Service Models Deployment
OpenAl GPT-3.5-turbo, GPT-4 Cloud API
Ollama Mistral, Llama2, Neural Chat, Self-hosted
CodelLlama
GPU NVIDIA CUDA, AMD ROCm Local
Support hardware
Container & Orchestration
Component Technology

Containerization

Orchestration

Base Images

Docker 20.10+

Docker Compose

python:3.10-alpine, postgres:12.19-alpine, redis:alpine,

nginx:alpine

Purpose

Passive and active subdomain
enumeration

Service discovery and banner
grabbing

URL discovery and endpoint
enumeration

Automated vulnerability
detection

Content discovery via bruteforce

Visual reconnaissance

Web application firewall
identification

Content management system
fingerprinting

Email/employee enumeration

Purpose

Vulnerability analysis and
reporting

On-premise Al inference (air-
gapped)

Accelerated model inference

Purpose
Application packaging

Multi-container
deployment

Minimal attack surface

Component Technology
Registry GitHub Container Registry(ghcr.io)
Architectures AMDG4, ARMG4

Security & Authentication
Component Technology
Authentication Django Auth + Session

Authorization

Django Permissions + Custom

RBAC
Password PBKDF2 SHA256
Storage
SSL/TLS Nginx with OpenSSL
CORS django-cors-headers

Purpose

Pre-built image
distribution

Multi-platform support

Purpose
User login and session management

Role-based access
(Admin/Auditor/Viewer)

Secure password hashing

HTTPS encryption

Cross-origin request handling

Key Azure Services (Recommended Deployment)

Compute

Azure Service

Azure Virtual Machines
(Primary)

Azure VM - GPU-
Enabled

Azure VM - Entry Level

Azure Container
Instances (ACI)

Azure Kubernetes
Service (AKS)

Azure Container
Registry (ACR)

Data Services

Purpose

Recommended production
deployment

Al-powered report generation
with Ollama

Small-scale or development
deployment

Optional: Quick deployment for
testing

Optional: Enterprise-scale
orchestration

Private image storage
(optional)

Configuration
Standard_D8s_v3 (8 vCPU, 32 GB RAM)

Standard_NC6s_v3 (6 vCPU, 112 GB
RAM, 1x V100 GPU)

Standard_Dé4s_v3 (4 vCPU, 16 GB RAM)

4 vCPU, 16 GB RAM per container group

3-10 node cluster (Standard_D4s_v3)

Premium tier for geo-replication

Azure Service Purpose Configuration

Flexible Server, 4 vCore, 32 GB RAM,
128 GB SSD

Azure Database for
PostgreSOL Managed database
Azure Cache for Redis Managed Redis Premium P1(6 GB) with persistence

Object storage for

screenshots/reports Hot tier, LRS redundancy

Azure Blob Storage

Azure Files Shared storage for tool configs ~ Premium tier for low latency

Networking & Security

Azure Service Purpose Configuration
Azure Application Gateway Load balancer + WAF WAF v2, SSL termination
Azure Virtual Network Network isolation Private subnet for backend services
Azure Key Vault Secret management Store DB passwords, APl keys
Azure Private Link Private connectivity Secure DB and Redis access

Monitoring & Operations

Azure Service Purpose Configuration
Azure Monitor Metrics and logging Container Insights for AKS
Application Insights APM and tracing Django middleware integration
Log Analytics Workspace Centralized logging 30-day retention
Azure Advisor Cost and performance optimization ~ Enabled by default

Proposed Azure Marketplace Offer Type

Recommendation: Virtual Machine-Based Solution Application

Offer Structure: Azure VM Solution Template with Docker Compose

Primary Deployment Options:

1. Option 1: Virtual Machine with Docker Compose - PRIMARY DEPLOYMENT SOLUTION
(Recommended for All Deployments)

o Pros:
» Fastest time-to-value (10-minute deployment)
= Familiar deployment model for most IT teams
= Full control over Docker container orchestration
= Easy migration from on-premise environments
= Single VM simplifies networking and monitoring
= Docker Compose provides reliable multi-container management
o Minimum Requirements:
= 8GB RAM or more (recommended: 16GB for production workloads)
= 4 vCPU or more (recommended: 8 vCPU for high concurrency)
= 100GB SSD for database and scan results storage
s Ubuntu 22.04 LTS or similar Linux distribution
o Recommended Azure VM SKUs:
» Standard_D4s_v3 (4 vCPU, 16GB RAM) - Small to medium deployments
» Standard_D8s_v3(8 vCPU, 32GB RAM) - Production deployments
= Standard_D16s_v3 (16 vCPU, 64GB RAM)- Enterprise/high-volume deployments
o Deployment Method: ARM template deploys VM with Docker and Docker Compose pre-
configured

o ldeal For: Teams of 1-50 users, all Azure deployments from POC to production workloads
2. Option 2: GPU-Enabled Virtual Machine - RECOMMENDED FOR AlI-POWERED REPORTING

o GPU Acceleration for Al Reports: Enhanced Al analysis and report generation with local
LLM inference
o Recommended Azure VM SKUs:
» Standard_NC6s_v3 (6 vCPU, 112GB RAM, 1x V100 GPU) - Al report generation
» Standard_NCé4as_T4_v3 (4 vCPU, 28GB RAM, 1x T4 GPU) - Cost-effective Al option
o Use Cases:
= QOrganizations requiring Al-powered vulnerability analysis
= Automated report generation with GPT-quality insights
» Air-gapped environments needing local LLM inference (Ollama)
= High-volume scanning with intelligent prioritization
o Cost Benefit: Local LLM vs. OpenAl API(S0.50/report local vs. S2-5/report cloud API)
o Deployment Method: Same ARM template with GPU-enabled VM SKU selection
o ldeal For: Security teams requiring advanced Al analysis, enterprises with strict data

sovereignty requirements

Optional Advanced Deployment Options (For Special Use Cases)

3. Option 3: Azure Container Instances (ACI) - For Development/Testing Only

o Pros:

= Pay-per-second billing
= No VM management overhead
= Automatic resource allocation
o Cons:
= Limitedto 4 vCPU per container group
= |ess control over container orchestration
» Higher costs for 24/7 workloads vs. VMs
o Ideal For: Development environments, temporary testing, cost-sensitive POCs

4. Option 4: Azure Kubernetes Service (AKS) - For Enterprise-Scale Multi-Tenant Deployments

o Pros:
= Unlimited scalability
» Advanced orchestration (auto-scaling, self-healing)
= Multi-region deployment
= GPU node pools for Al workloads
o Cons:
= Requires Kubernetes knowledge
= Higher operational complexity
= More expensive for small-scale deployments
= QOverkill for most use cases
o Ideal For: Only for large MSPs/MSSPs with 100+ concurrent clients, organizations already
standardized on Kubernetes, or multi-region HA requirements
o Note: Most organizations should use VM deployment for simplicity and cost-effectiveness

Recommended Marketplace Listing: Solution Template + Managed Application

Why This Approach:
o Solution Template: Provides ARM template for one-click deployment of:

o Azure Container Instances or AKS cluster
o Azure Database for PostgreSQL

o Azure Cache for Redis

o Azure Blob Storage

o Azure Key Vault

o Azure Application Gateway

o Pre-configured networking and security
o Managed Application: Optional managed service tier where:

o Customer deploys to their Azure subscription (data sovereignty)
o Vendor(Security Tools Alliance) can remotely manage updates and configuration
o Customer retains full ownership of data and infrastructure

o Enables"Support + Managed Services" revenue stream

Monetization Strategy

Tier Model Price What's Included
Community B'YOL(Brlng Your Own 0 Self-service deployment, community
License) support
Professional Annual Subscription $5,000/year Priority support, deployment assistance,

quarterly updates

Managed service, SLA, custom features,

Enterprise Custom Pricing $25,000+/year .
compliance packs

Azure Consumption Revenue: Microsoft shares Azure infrastructure spend (20-25% margin)

Deployment Architecture on Azure

Recommended Production Architecture (VM-Based with Optional GPU)

%$%{init: {'theme':'base', 'themeVariables': { 'fontSize':'lbpx'}}}%%
graph LR
subgraph Public["Public Network"]
INET["Internet
Users"]

end

subgraph Azure["Azure Subscription: Customer-Owned"]

subgraph RG["Resource Group: rengine-prod"]

subgraph Net ["Networking"]
GW["App Gateway
WAF v2 SSL
(Optional)"]
VN["VNet
10.0.0.0/16"]

end

subgraph VM["Primary VM - D8s v3"]

subgraph Docker["Docker Compose Stack"]
NGX ["Nginx
Proxy"]
WEB["Django Web
Gunicorn+Uvicorn"]
CEL["Celery Workers
5-30 Parallel"]
BT ["Celery Beat
Scheduler"]
LPG[("Local PG
(Optional)")]
LRD[("Local Redis
Cache/Queue")]

end

end

subgraph GPU["GPU VM - NC6s v3 (Optional)"]
OLL["Ollama LLM
V100 GPU
AI Reports"]

end

subgraph PaaS["Azure PaaS (Optional)"]
PG[("PostgreSQL
Flexible")]
RD[("Redis
Premium")]
BL["Blob Storage
Media"]
KV["Key Vault
Secrets"]

end

subgraph Mon["Monitoring"]
MN ["Monitor
Insights"]
end
end

end

INET --> GW

GW --> NGX

INET -.->|Direct| NGX
NGX --> WEB

WEB --> LPG

WEB --> LRD

WEB -.->|0Opt| PG
WEB -.->|0Opt| RD
WEB -.->|0Opt| BL
WEB -.->|0Opt| KV
CEL --> LPG

CEL --> LRD

CEL -.->|0Opt]| PG
CEL -.->|Opt| RD
CEL -.->|0Opt| BL
CEL -.->|0Opt| OLL
BT --> LRD

BT -.->|0Opt| RD
WEB —-.-> MN

CEL -.-> MN

classDef azure fill:#0078D4,stroke:#003366, stroke-width:3px,color:#ff
classDef vm fill:#28a745,stroke:#le7e34,stroke-width:3px,color:#fff, f
classDef docker f£ill:#2496ED, stroke:#1a73b8, stroke-width:3px,color:#f

classDef gpu fill:#76B900,stroke:#5a8c00,stroke-width:3px,color:#fff,

class GW,VN,PG,RD,BL,KV,MN azure
class NGX,WEB,CEL,BT,LPG, LRD docker
class OLL gpu

Scalability & Performance Characteristics

Concurrency Configuration

Component Min Max Recommended Notes

Configurable via

CeleryWorkers 5 30 15 MIN_CONCURRENCY/MAX_CONCURRENCY env
vars

Web .Server 4 32 8 Workers =(2 x CPU cores) + 1

(Gunicorn)

Database 20 500 100 PostgreSOL max_connections

Connections

Redis 50 1000 200 Redis maxclients

Connections

Estimated Performance Metrics

Workload Configuration Targets/Day Az'("éztc;’ st

Individual/Small -\ (D4s_v3: 4 vCPU, 166B) + Local DB/Redis 50 domains ~$140/month

Team
Medium Team VM (D8s_v3: 8 vCPU, 32GB) + Local DB/Redis 200 domains ~$280/month
Large Team with Al VM (D8s_v3)+ GPU VM (NCB6s_v3)+ Optional 500+. ~$1.200/month
PaaS domains
. VM (D16s_v3: 16 vCPU, 64GB)+ GPU + 1000+ _
Enterprise Managed PaaS domains $1,800/month

Cost Comparison vs. Container Orchestration:

e VM deployment: 60-70% cost savings vs. AKS for equivalent workloads
e GPU VM for Al: $800/month (NC6s_v3) vs. OpenAl API costs of $500-1500/month for similar
volume

e Managed PaaS services are optional - local containers reduce costs further

Security Architecture

Defense-in-Depth Strategy

1. Network Layer

o Azure NSGs for firewall rules
o Private endpoints for PaaS services (no public internet exposure)
o Application Gateway WAF for OWASP Top 10 protection

2. Application Layer

o Django security middleware (CSRF, XSS, clickjacking protection)
o Role-based access control (RBAC)
o Project-based data isolation

3. Data Layer

o Encryption at rest (Azure Storage Service Encryption)
o Encryptionin transit(TLS 1.2+)
o Automated backups with point-in-time restore

4. Secrets Management

o Azure Key Vault for all credentials
o Managed ldentity for passwordless authentication
o No hardcoded secrets in containers

5. Monitoring & Compliance

o Azure Defender for Containers
o Security Center recommendations

o Audit logging to Log Analytics

Migration Path from On-Premise to Azure

Phase 1: VM Deployment (1-2 hours)

e Deploy Docker Compose to Azure VM using ARM template
e Minimal configuration required (environment variables only)

e Instant production-ready deployment

Phase 2: GPU Integration (Optional - 1day)

e Add GPU-enabled VM for Al-powered reporting
e Deploy Ollama service for local LLM inference
o Configure Django to use GPU VM for report generation

Phase 3: Managed PaaS Enhancement (Optional - 1 week)

e Optionally migrate PostgreSQOL to Azure Database for PostgreSQL
e Optionally migrate Redis to Azure Cache for Redis

e Optionally move screenshots to Azure Blob Storage

o Update connection strings as needed

e Note: Local containers are sufficient for most deployments

Phase 4: Enterprise Features (Optional - Ongoing)

Add Application Gateway + WAF for enhanced security

Implement Azure Monitor alerts and dashboards

Configure automated backups and DR

Add Azure Key Vault for secrets management

Advanced Phase (Only for Large MSPs): Container Orchestration

e Fororganizations with 100+ concurrent clients, consider AKS
e Requires Kubernetes expertise and significantly higher costs
e Most organizations should remain on VM deployment

Integration Points for Azure Ecosystem

Current Capabilities

Azure Active Directory: Can integrate via SAML/0OIDC (requires custom development)

Azure DevOps: CI/CD pipelines for automated deployment

Azure Monitor: Custom metrics and logging (via Python SDK)

Azure Key Vault: Secrets injection via init containers

Future Enhancements (Marketplace Roadmap)

o Native AAD SSO integration

e Azure Sentinel integration for SIEM correlation
e Azure Front Door for global deployment
e Azure Cost Management integration for usage tracking

