GoPhish Technical Architecture

Table of Contents

e QOverview

o Application Architecture
e AWS Architecture

e Azure Architecture

e Component Details

e Security Architecture

e High Availability Architecture

e Network Architecture

e Database Architecture

e Scaling Considerations

Overview

This document provides comprehensive technical architecture guidance for deploying GoPhish in
various environments, with specific focus on AWS and Azure cloud platforms. The architectures

presented are designed to be secure, scalable, and maintainable.

Architecture Principles

1. Security First: All architectures prioritize security and isolation
2. High Availability: Critical components are redundant

3. Scalability: Horizontal scaling where appropriate

4, Cost-Efficiency: Balance performance with cost

5. Maintainability: Simple operations and monitoring

Application Architecture

System Components

graph TB
subgraph "External Users"
Admin[Security Admin]
Target [Phishing Targets]

end

subgraph "Gophish Application"
subgraph "Admin Layer"
AdminUI [Admin Web UTI]
API[REST APT]
Auth[Authentication]

end

subgraph "Phishing Layer"
PhishServer [Phishing Server]
Landing[Landing Pages]
Tracking[Tracking Engine]

end

subgraph "Processing Layer"
Worker [Background Worker]
Mailer [Email Sender]
IMAP[IMAP Monitor]

end

subgraph "Data Layer"
DB|[(Database)]
Sessions[Session Store]
end

end

subgraph "External Services"
SMTP [SMTP Server]
Webhook [Webhook Endpoints]
ImapServer [IMAP Server]

end

Admin -->|HTTPS :3333| AdminUI
Admin -->|HTTPS :3333| API
Target —-->|HTTP/HTTPS :80/443| PhishServer

AdminUI --> Auth
API --> Auth

Auth --> Sessions

AdminUI --> DB

APT --> DB

PhishServer —--> DB
Landing --> DB

Tracking --> DB

Worker —--> DB
Mailer --> SMTP

IMAP —--> ImapServer

PhishServer --> Landing
PhishServer --> Tracking
Worker —--> Mailer

Worker —--> IMAP

APT --> Webhook

style Admin

fill:#elf5ff

style Target fill:#fff3e0
style DB fill:#f3e5f5

style SMTP fill:#e8f5e9

style AdminUI fill:#bbdefb
style PhishServer fill:#ffccbc

Data Flow Diagram

sequenceDiagram
participant
participant
participant
participant
participant
participant
participant

participant

Admin->>UT:

Admin as Security Admin

UI as Admin Interface

API as Gophish API

DB as Database

Worker as Background Worker
SMTP as SMTP Server

Target as Target User

Phish as Phish Server

Create Campaign

UI->>API: POST /api/campaigns
API->>DB: Store Campaign

API->>Worker: Queue Campaign

Worker->>DB: Get Targets

loop For Each Target
Worker->>SMTP: Send Email
SMTP->>Target: Phishing Email

end

Target->>Target: Opens Email
Target->>Phish: GET /track?rid=xxx (tracking pixel)
Phish->>DB: Log "Email Opened" Event

Target->>Phish: GET /?rid=xxx (click link)
Phish->>DB: Log "Link Clicked" Event
Phish->>Target: Render Landing Page

Target->>Phish: POST / (submit credentials)
Phish->>DB: Log "Data Submitted" Event
Phish->>Target: Redirect to legitimate site

Admin->>UI: View Results

UI->>API: GET /api/campaigns/1l/results
API->>DB: Query Results

DB->>API: Return Results

API->>UI: Display Results

UI->>Admin: Show Dashboard

AWS Architecture

Single Region Deployment (Recommended for Most Use Cases)

graph TB
subgraph "AWS Cloud - us-east-1"
subgraph "VPC - 10.0.0.0/16"
subgraph "Public Subnet 1 - AZl - 10.0.1.0/24"
ALBl [Application Load Balancer]
NATI1 [NAT Gateway]

end

subgraph "Public Subnet 2 - AZ2 - 10.0.2.0/24"
ALB2 [ALB - Standby]
NAT2 [NAT Gateway]

end

subgraph "Private Subnet 1 - AZl -
Adminl [Admin Server
EC2 t3.
Phishl [Phish Server
EC2 t3.

end

subgraph "Private Subnet 2 - AZ2 -
Admin2 [Admin Server
EC2 t3.
Phish2 [Phish Server
EC2 t3.

end

subgraph "Database Subnet 1 - Azl -
RDS1[(RDS MySQL
Primary)]

end

10.0.10.0/24"
medium]

small]

10.0.11.0/24"
medium]

small]

10.0.20.0/24"

subgraph "Database Subnet 2 - AZ2 - 10.0.21.0/24"

RDS2 [(RDS MySQL
Standby)]

end

end

R53[Route 53
DNS]

S3[S3 Bucket
Static Assets]
SES [Amazon SES
Email Sending]
CW[CloudWatch
Monitoring]

Secrets[Secrets Manager
Credentials]

R53 —-->|DNS Resolution]|

ALB1 --> Adminl
ALB1 --> Admin2
ALB1 --> Phishl
ALB1 --> Phish2

Adminl
Admin?2
Phishl
Phish?2

RDS1 -

Adminl
Admin?2
Adminl
Admin?2
Adminl

.—>|Replication|

RDS1
RDS1
RDS1
RDS1

S3
S3
SES
SES

Secrets

ALB1

RDS2

Admin2 --> Secrets
Phishl --> Secrets
Phish2 --> Secrets

Adminl --> CW
Admin2 --> CW
Phishl --> CW
Phish2 --> CwW
RDS1 --> CW

Adminl --> NATI1
Admin2 --> NAT?2

end

Internet ((Internet))

AdminUser [Security Admin]

TargetUser [Phishing Target]

Internet --> R53
AdminUser -.->|HTTPS :443| Internet
TargetUser -.->|HTTP/HTTPS| Internet

style
style
style
style
style
style
style
style

RDS1 fill:#f9db5e5
RDS2 fill:#f9db5e5
SES fill:#eeeeee
S3 fill:#eeeeee

Adminl
Admin?2
Phishl
Phish?2

fill
fill
fill
fill

: #bbdefb
: #bbdefb
:#ffccbe
:#ffccbe

AWS Architecture - Detailed Component Description

Networking:

e VPC: Isolated virtual network (10.0.0.0/186)

o Public Subnets: Host ALB and NAT Gateways (10.0.1.0/24, 10.0.2.0/24)
 Private Subnets: Host application servers(10.0.10.0/24, 10.0.11.0/24)
» Database Subnets: Host RDS instances(10.0.20.0/24, 10.0.21.0/24)

o Multi-AZ: High availability across 2 Availability Zones

Compute:

e Admin Servers: t3.medium EC2 instances (2 vCPU, 4GB RAM)

» Phish Servers: t3.small EC2 instances (2 vCPU, 2GB RAM)
¢ Auto Scaling: Optional Auto Scaling Groups for dynamic scaling
e AMI: Custom AMI with Gophish pre-installed

Load Balancing:

o Application Load Balancer: Layer 7 load balancing

o Listener1: Port 443 — Admin Servers(Target Group 1)

o Listener 2: Port 80/443 — Phish Servers(Target Group 2)
o Health Checks: HTTP health checks every 30 seconds

o Sticky Sessions: Session affinity for admin interface

Database:

o RDS MySQL: Managed database service
o Instance: db.t3.medium(2 vCPU, 4GB RAM)
o Storage: 100GB GP3 SSD
o Multi-AZ: Automatic failover to standby
o Backup: Daily automated backups, 7-day retention

o Encryption: At rest and in transit
Email:

¢ Amazon SES: Managed email sending service
o High deliverability
o Bounce and complaint handling
o DKIM/SPF configuration
o Sending limits: 50,000 emails/day (adjustable)

Storage:

o S3 Bucket: Static assets, templates, exports
o Encryption: Server-side encryption (SSE-S3)
o Versioning: Enabled
o Lifecycle: Expire old exports after 90 days

Security:

o Secrets Manager: Store database credentials, APl keys
o Security Groups:

o ALB: Allow 80, 443 from 0.0.0.0/0

o Admin: Allow 3333 from ALB only

o Phish: Allow 80 from ALB only

o RDS: Allow 3306 from Admin/Phish only
e IAMRoles: EC2 instances use IAM roles (no keys)

o Network ACLs: Additional network layer security
Monitoring:

¢ CloudWatch: Metrics, logs, alarms

o CPU, memory, disk, network metrics

[¢]

Application logs

o

RDS performance insights

[e]

Custom metrics (campaigns, emails sent)
e CloudWatch Alarms: Alert on anomalies

¢ SNS: Notifications to administrators
DNS:

e Route 53: DNS management
o Arecord: gophish.example.com — ALB
o Arecord: phish.example.com — ALB

o Health checks: Monitor endpoint availability

AWS Architecture - Small/Medium Deployment (Cost-Optimized)

graph TB
subgraph "AWS Cloud - us-east-1"
subgraph "VPC - 10.0.0.0/16"
subgraph "Public Subnet - 10.0.1.0/24"
ALB[Application Load Balancer]

end

subgraph "Private Subnet - 10.0.10.0/24"
EC2 [Gophish All-in-One
EC2 t3.small
Admin + Phist
end

end

R53[Route 53]
SES [Amazon SES]
CW[CloudWatch]

R53 --> ALB
ALB --> EC2
EC2 --> SES
EC2 --> CW

end

Internet ((Internet))

Users[Users]

Internet —--> R53

Users —--> Internet

style EC2 fill:#90caf?9

Specifications:

 Single EC2 instance: t3.small (2 vCPU, 2GB RAM)
o SOLite database: Local storage

e Cost: ~520-30/month

o Suitable for: Up to 2,000 users

AWS Architecture - Enterprise HA Deployment

graph TB
subgraph "AWS Cloud"
subgraph "Region 1 - us-east-1 PRIMARY"
R53 1[Route 53
Failover Primary]

subgraph "VPC 1"
ALB1 [ALB]
ASG1l[Auto Scaling Group
Admin Servers 2-10]
ASG2 [Auto Scaling Group
Phish Servers 2-10]
RDS1[(RDS Multi-AZ
Primary)]
ElastiCachel [ElastiCache Redis
Session Store]
end

end

subgraph "Region 2 - us-west-2 DR"
R53 2[Route 53
Failover Secondary]

subgraph "VPC 2"
ALB2 [ALB]
ASG3[Auto Scaling Group
Admin Servers]
ASG4 [Auto Scaling Group
Phish Servers]
RDS2 [(RDS Read Replica
Promoted on Failover)]
ElastiCache?2 [ElastiCache Redis]

end

end

S3[S3 Bucket
Cross-Region Replication]

RDS1 -.->|Cross—-Region Replication]| RDS2
ElastiCachel -.->|Global Datastore| ElastiCache?

R53 1 --> ALBL
R53 2 --> ALB2
ALBl --> ASGl
ALBl --> ASG2
ALB2 --> ASG3
ALB2 --> ASG4

ASGl --> RDSI1
ASG2 --> RDS1
ASGl --> ElastiCachel
ASG3 --> RDS2
ASG4 --> RDS2
ASG3 --> ElastiCache?2

ASGl --> S3
ASG3 --> S3

end

Internet ((Internet))

Internet --> R53 1

style RDS1 fill:#f48fbl
style RDS2 fill:#f48fbl
style ElastiCachel fill:#ce93d8
style ElastiCache2 fill:#ce93d8

Features:

o Multi-Region: Primary and DR regions

¢ Auto Scaling: Dynamic scaling based on load

o Session Store: Redis for distributed sessions

o Cross-Region Replication: Database and S3

o Automatic Failover: Route 53 health check based

e Cost: ~$1,000-3,000/month

o Suitable for: 50,000+ users, mission-critical deployments

Azure Architecture

Single Region Deployment (Recommended)

graph TB

subgraph "Azure Cloud - East US"

subgraph "Resource Group - gophish-prod"
subgraph "Virtual Network - 10.0.0.0/16"

end

subgraph "Subnet - Application - 10.0.1.0/24"
AGW [Application Gateway
WAF Enabled]

end

subgraph "Subnet - Admin - 10.0.10.0/24"
VMSS1[VM Scale Set
Admin Servers
Standard B2:

end

subgraph "Subnet - Phish - 10.0.11.0/24"
VMSS2 [VM Scale Set
Phish Servers
Standard B2:

end

subgraph "Subnet - Database - 10.0.20.0/24"
MySQL[(Azure Database
for MySQL
Flexible Sery

end

DNS[Azure DNS
gophish.example.com]

Storage[Azure Blob Storage
Static Assets]
KV [Key Vault
Secrets]

Monitor[Azure Monitor
Log Analytics]

NSG[Network Security Groups]

end

SendGrid[SendGrid
Email Service]

end

Internet ((Internet))

AdminUser[Security Admin]

TargetUser [Phishing Target]

Internet --> DNS

DNS --> AGW

AGW —--> VMSS1

AGW --> VMSS2

VMSS1 —--> MySQL

VMSS2 --> MySQL

VMSS1 --> Storage

VMSS1 —--> KV

VMSS2 —--> KV

VMSS1 —--> SendGrid

VMSS1 —--> Monitor

VMSS2 —--> Monitor

MySQL --> Monitor

NSG -.->|Firewall Rules| VMSS1
NSG -.->|Firewall Rules| VMSS2
NSG -.->|Firewall Rules| MySQL
AdminUser --> Internet
TargetUser —--> Internet

style MySQL fill:#£9d5eb5

style
style
style

Storage fill:#elbee7
VMSS1 fill:#bbdefb
VMSS2 fill:#ffccbc

Azure Architecture - Detailed Component Description

Networking:

Virtual Network: Isolated network (10.0.0.0/16)
Subnets:

o Application Gateway: 10.0.1.0/24
o Admin Servers: 10.0.10.0/24

o Phish Servers: 10.0.11.0/24

o Database: 10.0.20.0/24

Compute:

Network Security Groups: Subnet-level firewall rules
Azure Firewall: Optional for enhanced security

e VM Scale Sets: Auto-scaling virtual machine groups
o Admin VMSS: Standard_B2s(2 vCPU, 4GB RAM)
o Phish VMSS: Standard_B2s(2 vCPU, 4GB RAM)

o Mininstances: 2
o Maxinstances: 10
o Scale based on CPU/memory/custom metrics

Load Balancing:

o Application Gateway: Layer 7 load balancer
WAF enabled (Web Application Firewall)
SSL termination

o

[e]

[e]

Path-based routing:
= /admin — Admin VMSS
» /*— Phish VMSS
Health probes

[e]

[e]

Session affinity (cookie-based)

Database:

e Azure Database for MySQL: Managed PaaS database
o Flexible Server tier
o General Purpose: 2 vCores, 8GB RAM
o Storage: 100GB SSD
o Backup: Automated daily backups, 7-day retention
o High Availability: Zone-redundant HA
o Encryption: At rest and in transit

o Firewall: Allow Azure services only

Email:

¢ SendGrid: Integrated email service
o Azure Marketplace integration
o DKIM/SPF configuration
o Bounce and complaint handling
o Alternative: Use custom SMTP

Storage:

o Azure Blob Storage: Object storage
o Hot tier for active data
o Container: gophish-assets(private)
o Encryption: Microsoft-managed keys

o Lifecycle management: Archive old data
Security:

o Key Vault: Secure secret storage

o Database credentials

o APl keys

o Certificates

o Managed identities for VM access (no credentials)
o NSGs: Network security rules

o App Gateway: Allow 80, 443 from Internet

o Admin VMSS: Allow 3333 from App Gateway

o Phish VMSS: Allow 80 from App Gateway

o MySQL: Allow 3306 from VMSS only
e Azure AD: Identity and access management

e RBAC: Role-based access control for Azure resources
Monitoring:

e Azure Monitor: Comprehensive monitoring
o Metrics: CPU, memory, disk, network
o Logs: Application and system logs
o Alerts: Automated alerts on thresholds
o Dashboards: Custom monitoring dashboards
o Application Insights: Application performance monitoring

¢ Log Analytics: Centralized log management
DNS:

e Azure DNS: DNS hosting
o Arecord: gophish.example.com — Application Gateway IP
o CNAME: phish.example.com — gophish.example.com
o TTL: 300 seconds

Backup & DR:

e Azure Backup: VM and database backups
¢ Geo-Redundant Storage: Cross-region replication

o Azure Site Recovery: Disaster recovery orchestration

Azure Architecture - Small/Medium Deployment (Cost-Optimized)

graph TB
subgraph "Azure Cloud - East US"
subgraph "Resource Group"
VNet [Virtual Network]
VM[Single VM
Standard B2s
All-in-One Server]
MySQL[(Azure Database
for MySQL
Basic Tier)]

NSG[Network Security Group]

end

DNS[Azure DNS]

DNS --> VM
VM --> MySQL
NSG --> VM

end

Internet ((Internet))
Internet --> DNS

style VM fill:#90caf?9
style MySQL fill:#£9db5eb

Specifications:

 Single VM: Standard_B2s(2 vCPU, 4GB RAM)

o Database: Azure Database for MySQL - Basic tier
e Cost: ~$50-80/month

o Suitable for: Up to 2,000 users

Azure Architecture - Enterprise HA Deployment

graph TB
subgraph "Azure"

TM[Traffic Manager
Priority Routing]

subgraph "Primary Region - East US"
subgraph "Availability Zone 1"
AGW1 [App Gateway]
VMSS1 [Admin VMSS]
VMSS2 [Phish VMSS]

end

subgraph "Availability Zone 2"
AGW1 AZ2[App Gateway]
VMSS1 AZZ2[Admin VMSS]
VMSS2 AZZ2[Phish VMSS]

end

MySQL1[(Azure MySQL
Zone-Redundant HA)]
Redisl [Azure Cache
for Redis]

end

subgraph "DR Region - West US"
AGW2 [App Gateway]
VMSS3 [Admin VMSS]
VMSS4 [Phish VMSS]
MySQL2 [(MySQL
Read Replica)]
Redis2 [Redis Replica]

end

Storage [Geo-Redundant
Storage Account]

™ --> AGW1
™ -.->|Failover| AGW2

AGW1 --> VMSS1
AGW1 --> VMSS2
AGW1 AZ2 --> VMSS1 AZ2
AGWl AZ2 --> VMSS2 AZ2

VMSS1 --> MySQL1
VMSS2 --> MySQL1
VMSS1 --> Redisl

AGW2 --> VMSS3
AGW2 --> VMSS4
VMSS3 --> MySQL2
VMSS4 --> MySQL2
VMSS3 --> Redis?2

MySQL1 -.->|Geo-Replication| MySQL2
Redisl -.->|Geo-Replication| Redis2

VMSS1 --> Storage
VMSS3 --> Storage

end

style MySQLl fill:#f48fbl
style MySQL2 fill:#f48fbl
style Redisl fill:#ce93d8
style Redis2 fill:#ce93d8

Features:

o Multi-Region: Primary (East US)and DR (West US)
 Availability Zones: Within primary region

o Traffic Manager: Global load balancing and failover

e Zone-Redundant HA: Database and cache

e Geo-Replication: Cross-region data replication

e Cost: ~S1,500-4,000/month

» Suitable for: 50,000+ users, enterprise deployments

Component Details

Admin Server Component

Purpose: Provides administrative interface and API
Specifications:

e CPU: 2 cores minimum, 4 cores recommended
e Memory: 4GB minimum, 8GB recommended
o Storage: 20GB 0S + database storage

o Network: Private subnet, load balancer access only

Software:

e 0S: Ubuntu 20.04 LTS or Amazon Linux 2
e Runtime: Gophish binary(no dependencies)
o Service: systemd service for auto-start

* Reverse Proxy: Optional Nginx for additional features

Configuration:

"admin server": {
"listen url": "0.0.0.0:3333",
"use tls": true,
"cert path": "/etc/gophish/cert.pem",
"key path": "/etc/gophish/key.pem"
}y
"phish server": ({

"listen url": "0.0.0.0:80"
}y

"db name": "mysgl",

"db path": "user:pass@tcp (rds-endpoint:3306)/gophish"

Health Check:

e Endpoint: GET /health

e Interval: 30 seconds

e Timeout: 5 seconds

o Healthy Threshold: 2 consecutive successes

¢ Unhealthy Threshold: 3 consecutive failures

Phish Server Component

Purpose: Serves landing pages and tracks interactions
Specifications:

CPU: 1-2 cores

Memory: 2GB minimum, 4GB recommended
Storage: 10GB 0S

Network: Public subnet (via load balancer)

Software:

e 0S: Ubuntu 20.04 LTS or Amazon Linux 2
e Runtime: Gophish binary (phish mode only)

Configuration:

./gophish --mode phish --config /etc/gophish/config.json

Scaling:

e Horizontal scaling: Add more phish servers behind load balancer
o Stateless: No session state, fully scalable

e Connection draining: 300 seconds for graceful shutdown

Database Component

Schema Overview:

Core Tables:

. users - Admin users and authentication
. campaigns - Campaign definitions

. templates - Email templates

. pages - Landing pages

. groups - Target groups

. targets - Individual recipients

. results - Campaign results per recipient

. events - Detailed event log

O O J 0O ol M N N =

. smtp - SMTP sending profiles
Performance Tuning:

MySOL Configuration:

[mysgld]
innodb buffer pool size = 2G
innodb log file size = 512M

max connections = 500
query cache size = 64M
Indexes:

e campaigns (user id, created date)

results (campaign id, status)

e events (campaign id, time)

targets (group id, email)

Backup Strategy:

Automated Backups: Daily at 2 AMUTC
Retention: 7 days point-in-time recovery

Backup Validation: Weekly restore test

Export Backups: Monthly full export to S3/Blob Storage

Security Architecture

Network Security Architecture

graph TB
subgraph "Internet Boundary"
Internet ((Internet))
WAF [Web Application Firewall]

end

subgraph "DMZ - Public Subnet"
LB[Load Balancer
SSL Termination]
Bastion[Bastion Host
Jump Box]

end

subgraph "Application Tier - Private Subnet"
Admin[Admin Servers]
Phish[Phish Servers]

end

subgraph "Data Tier - Private Subnet"
DB[(Database)]
Cache[(Cache)]

end

subgraph "Management"
VPN [VPN Gateway]
Monitoring[Monitoring]

end

Internet --> WAF
WAEF --> LB

LB --> Admin

LB —--> Phish
Admin --> DB
Phish --> DB

Admin --> Cache

VPN -.->|SSH| Bastion
Bastion -.->|SSH| Admin
Bastion -.->|SSH| Phish
Admin --> Monitoring

Phish --> Monitoring
DB --> Monitoring

style Internet fill:#ffcdd2
style WAF fill:#fff9c4

style DB fill:#c8e6c?9
style Cache fill:#c8e6c?9

Security Layers

Layer 1: Network Security

e \VPC/VNet isolation

Private subnets for application and database

Security groups/NSGs with least privilege

No direct Internet access to application servers

NAT Gateway for outbound traffic only
Layer 2: Application Security

e TLS1.2+for all connections

o Certificate-based authentication
e APl key rotation

¢ Rate limiting

¢ Input validation and sanitization

Layer 3: Data Security

e Encryption at rest (database and storage)
e Encryptionintransit(TLS)

e Secure password hashing(bcrypt)

o Database firewall rules

e Secrets management (AWS Secrets Manager / Azure Key Vault)
Layer 4: Access Control

e Role-based access control (RBAC)

e Multi-factor authentication (planned)
e Principle of least privilege

e Audit logging

e Session management

Layer 5: Monitoring & Response

e Security event logging
e Anomaly detection
e Intrusion detection
e Automated alerting

¢ Incident response procedures

Security Group / NSG Rules

Admin Server Security Group:

Inbound:
- Allow TCP 3333 from Load Balancer Security Group
- Allow TCP 22 from Bastion Host (management only)

Outbound:

- Allow TCP 3306 to Database Security Group

- Allow TCP 587 to 0.0.0.0/0 (SMTP)

- Allow TCP 443 to 0.0.0.0/0 (webhooks, updates)

Phish Server Security Group:

Inbound:
- Allow TCP 80 from Load Balancer Security Group
- Allow TCP 22 from Bastion Host (management only)

Outbound:
- Allow TCP 3306 to Database Security Group
- Allow TCP 443 to 0.0.0.0/0 (webhooks)

Database Security Group:

Inbound:
- Allow TCP 3306 from Admin Server Security Group
- Allow TCP 3306 from Phish Server Security Group

Outbound:
- Deny all (database shouldn't initiate outbound)

Load Balancer Security Group:

Inbound:

- Allow TCP 443 from 0.0.0.0/0 (admin interface)

- Allow TCP 80 from 0.0.0.0/0 (phishing pages)

- Allow TCP 443 from 0.0.0.0/0 (phishing pages, optional)

Outbound:
- Allow TCP 3333 to Admin Server Security Group
- Allow TCP 80 to Phish Server Security Group

High Availability Architecture

HA Requirements

Availability Targets:

e Uptime: 99.9% (8.76 hours downtime/year)
o RTO(Recovery Time Objective): < 15 minutes

o RPO (Recovery Point Objective): <5 minutes

HA Components

Application Tier HA:

e Multiple instances behind load balancer
e Health checks with automatic failover
¢ Auto-scaling for capacity

e Graceful connection draining

Database Tier HA:

Multi-AZ deployment (primary + standby)
Automatic failover (< 2 minutes)

Read replicas for scaling

Point-in-time recovery
Network Tier HA:

e Multi-AZ load balancer
e Multiple NAT Gateways

e Redundant VPN connections

Failure Scenarios & Response

graph TB
subgraph "Failure Detection"
HC[Health Check
Failure]
Monitor [Monitoring
Alert]

end

subgraph "Automated Response"

LB[Load Balancer
Removes Instance]
ASG[Auto Scaling
Launches Replacement]
DB Failover[Database
Automatic Failover]

end

subgraph "Manual Response"
Alert[Alert
Operations Team]
Investigate[Investigate
Root Cause]
Remediate [Remediate
Issue]

end

HC --> LB
HC --> ASG

Monitor —--> Alert

LB —--> |Instance Unhealthy| ASG
ASG --> |Launch New Instance| HC

Monitor --> DB Failover

DB Failover --> Alert

Alert --> Investigate

Investigate --> Remediate

style HC fill:#ffcdd2
style LB fill:#fff9c4
style ASG fill:#c8e6c?9

Scenario 1: Single Server Failure

o Detection: Health check fails after 3 attempts (~90 seconds)

¢ Response: Load balancer stops routing traffic

e Recovery: Auto-scaling launches new instance (~5 minutes)

o Impact: No user impact, traffic served by remaining instances

Scenario 2: Database Failure

o Detection: Database health check fails

o Response: Automatic failover to standby (AWS RDS / Azure MySQL)

e Recovery: <2 minutes

¢ Impact: Brief connection errors, applications reconnect automatically

Scenario 3: Availability Zone Failure

e Detection: All instances in AZ fail health checks

e Response: Traffic routed to instances in other AZ
e Recovery: Immediate
e Impact: No user impact if multi-AZ deployed

Scenario 4: Region Failure (DR)

Detection: Regional health check fails

Response: Manual or automatic failover to DR region

Recovery: 15-30 minutes (depending on automation)

Impact: Brief outage during DNS propagation

Network Architecture

DNS Configuration

Primary Domain: gophish.example.com

Type: A

Name: gophish.example.com
Value: [Load Balancer IP/DNS]
TTL: 300

Phishing Domain: phish.example.com

Type: CNAME
Name: phish.example.com
Value: gophish.example.com

TTL: 300

Email Domain:

Type: MX

Name: example.com

Value: 10 mail.example.com
TTL: 3600

Type: TXT (SPF)
Name: example.com

Value: "v=spfl include: spf.google.com ~all"

Type: TXT (DKIM)

Name: default. domainkey.example.com

Value: "v=DKIM1l; k=rsa; p=[public key]"
Type: TXT (DMARC)

Name: dmarc.example.com

Value: "v=DMARC1l; p=quarantine; rua=mailto:dmarc@example.com"

SSL/TLS Configuration

Certificate Sources:

Let's Encrypt (free, automated)
AWS Certificate Manager (AWS deployments)
Azure Key Vault (Azure deployments)

Commercial CA (extended validation)
TLS Best Practices:

e TLS 1.2 minimum, TLS 1.3 preferred

e Strong cipher suites only

e Perfect Forward Secrecy (PFS)

e HTTP Strict Transport Security (HSTS)

e Certificate pinning(optional)

Database Architecture

Database Sizing

Small Deployment (< 2,000 users):

e SQLite3: Localfile, 1-2GB
e No separate database server needed
e Backup: File-level backups

Medium Deployment (2,000-10,000 users):

MySOL: db.t3.medium (2 vCPU, 4GB RAM)
Storage: 100GB SSD

Connections: 200 max

Single AZ acceptable

Large Deployment (10,000-50,000 users):

MySOL: db.r5.large (2 vCPU, 16GB RAM)
Storage: 500GB SSD

Connections: 500 max

Multi-AZ required

Read replicas: 1-2

Enterprise Deployment (50,000+ users):

MySOL: db.rb.xlarge+(4+ vCPU, 32+ GB RAM)
Storage: 1TB+ SSD

Connections: 1000 max

Multi-AZ required

Read replicas: 2-4

Database clustering (Aurora MySQOL)

Database Maintenance

Regular Tasks:

Daily: Automated backups

Weekly: Backup validation, log review

Monthly: Performance tuning, index optimization
Quarterly: Capacity planning, upgrade planning
Annually: DR test, security audit

Performance Monitoring:

Query execution time
Slow query log
Connection pool usage
Disk I/0

Replication lag

Table locks

Scaling Considerations

Horizontal Scaling

Application Tier:

Add more admin/phish server instances

o Configure auto-scaling based on:
o CPU utilization (>70%)
o Memory utilization (> 80%)
o Request count(>1000/min per instance)
o Custom metrics(campaigns running)

Example Auto-Scaling Policy (AWS):

Target Tracking:
Metric: Average CPU Utilization
Target: 70%
Min Instances: 2
Max Instances: 10

Cooldown: 300 seconds

Vertical Scaling

When to Scale Up:

e Consistently high resource usage
o Database performance degradation

¢ Increased storage requirements
Scaling Strategy:

1. Monitor performance metrics

2. ldentify bottleneck (CPU, memory, I/0)
3. Schedule maintenance window

4. Upgrade instance size

5. Validate performance improvement

Performance Optimization

Application Level:

o Database query optimization

e Connection pooling

e Caching frequently accessed data

e Asynchronous processing (email sending)
e Load balancer session affinity

Database Level:

Proper indexing

Query optimization

Read replicas for reporting
Partitioning large tables
Archive old campaign data

Network Level:

CDN for static assets (optional)
Compression(gzip)
Connection keep-alive

Optimal MTU settings

Cost Estimation

AWS Cost Estimates

Small Deployment:

EC2(1x t3.small): S15/month

RDS MySQL (db.t3.micro): S15/month
Load Balancer: S20/month

Data Transfer: S10/month

Total: ~$60/month

Medium Deployment:

EC2(2x t3.medium): S60/month

RDS MySOL (db.t3.medium): S60/month
Load Balancer: $S20/month

S3, CloudWatch: $20/month

Data Transfer: $30/month

Total: ~$190/month

Large HA Deployment:

EC2 (4x t3.large): S240/month

RDS MySQL Multi-AZ (db.r5.large): $320/month
Load Balancer: S40/month

ElastiCache Redis: S50/month

S3, CloudWatch: S50/month

Data Transfer: $100/month

o Total: ~§800/month

Azure Cost Estimates

Small Deployment:

e VM(Ix Standard_B2s): S30/month
e MySQL Basic: S25/month

e Load Balancer: $20/month
 Total: ~§75/month

Medium Deployment:

e VM(2x Standard_B2ms): S90/month
e MySQL General Purpose: $130/month
o Application Gateway: S150/month
 Storage, Monitoring: $30/month
 Total: ~8400/month

Large HA Deployment:

e VM Scale Sets(4-10 instances): S400/month
e MySQL Zone-Redundant HA: S450/month

e Application Gateway: $S150/month

 Redis Cache: $100/month

 Storage, Monitoring: S100/month

 Total: ~$1,200/month

Deployment Checklist

Pre-Deployment

. Architecture design reviewed and approved
. Sizing calculations completed

. Cost estimation and budget approval

. DNS domains registered

. SSL certificates obtained

. Cloud accounts configured

. Network design documented

. Security requirements defined

. Compliance requirements identified

. Monitoring plan created

. Backup and DR plan documented

Deployment

. VPC/VNet created with subnets
. Security groups/NSGs configured

. Database instance deployed

. Database initialized and secured
. Application servers deployed

. Gophish installed and configured
. Load balancer configured

. DNS records created

. SSL certificates installed

. Monitoring configured

. Logging configured
. Backups configured

. Auto-scaling configured (if applicable)

Post-Deployment

. Smoke tests passed
. Load testing completed
. Security scan completed

. Backup tested and validated

. DR procedure tested

. Documentation updated

. Team trained on operations

. Monitoring alerts configured

. Runbooks created

. Go-live approval obtained
Conclusion

This technical architecture document provides comprehensive guidance for deploying Gophish in
secure, scalable, and highly available configurations across AWS and Azure platforms. The
architectures can be adapted based on specific organizational requirements, scale, and budget
constraints.

Key takeaways:

o Start with simpler architectures and scale as needed

e Security should be built in from the start

e High availability requires investment but provides resilience
¢ Regular monitoring and maintenance are essential

o Cost optimization is an ongoing process

Document Version: 1.0
Last Updated: 2025-11-05
Author: Technical Architecture Team

