
GoPhish Technical Architecture

Table of Contents

Overview

Application Architecture

AWS Architecture
Azure Architecture

Component Details
Security Architecture

High Availability Architecture

Network Architecture
Database Architecture

Scaling Considerations

Overview

This document provides comprehensive technical architecture guidance for deploying GoPhish in

various environments, with specific focus on AWS and Azure cloud platforms. The architectures

presented are designed to be secure, scalable, and maintainable.

Architecture Principles

1. Security First: All architectures prioritize security and isolation
2. High Availability: Critical components are redundant

3. Scalability: Horizontal scaling where appropriate

4. Cost-Efficiency: Balance performance with cost
5. Maintainability: Simple operations and monitoring

Application Architecture

System Components

graph TB

 subgraph "External Users"

 Admin[Security Admin]

 Target[Phishing Targets]

 end

 subgraph "Gophish Application"

 subgraph "Admin Layer"

 AdminUI[Admin Web UI]

 API[REST API]

 Auth[Authentication]

 end

 subgraph "Phishing Layer"

 PhishServer[Phishing Server]

 Landing[Landing Pages]

 Tracking[Tracking Engine]

 end

 subgraph "Processing Layer"

 Worker[Background Worker]

 Mailer[Email Sender]

 IMAP[IMAP Monitor]

 end

 subgraph "Data Layer"

 DB[(Database)]

 Sessions[Session Store]

 end

 end

 subgraph "External Services"

 SMTP[SMTP Server]

 Webhook[Webhook Endpoints]

 ImapServer[IMAP Server]

 end

 Admin -->|HTTPS :3333| AdminUI

 Admin -->|HTTPS :3333| API

 Target -->|HTTP/HTTPS :80/443| PhishServer

 AdminUI --> Auth

 API --> Auth

 Auth --> Sessions

 AdminUI --> DB

 API --> DB

 PhishServer --> DB

 Landing --> DB

 Tracking --> DB

 Worker --> DB

 Mailer --> SMTP

 IMAP --> ImapServer

 PhishServer --> Landing

 PhishServer --> Tracking

 Worker --> Mailer

 Worker --> IMAP

 API --> Webhook

 style Admin fill:#e1f5ff

 style Target fill:#fff3e0

 style DB fill:#f3e5f5

 style SMTP fill:#e8f5e9

 style AdminUI fill:#bbdefb

 style PhishServer fill:#ffccbc

Data Flow Diagram

sequenceDiagram

 participant Admin as Security Admin

 participant UI as Admin Interface

 participant API as Gophish API

 participant DB as Database

 participant Worker as Background Worker

 participant SMTP as SMTP Server

 participant Target as Target User

 participant Phish as Phish Server

 Admin->>UI: Create Campaign

 UI->>API: POST /api/campaigns

 API->>DB: Store Campaign

 API->>Worker: Queue Campaign

 Worker->>DB: Get Targets

 loop For Each Target

 Worker->>SMTP: Send Email

 SMTP->>Target: Phishing Email

 end

 Target->>Target: Opens Email

 Target->>Phish: GET /track?rid=xxx (tracking pixel)

 Phish->>DB: Log "Email Opened" Event

 Target->>Phish: GET /?rid=xxx (click link)

 Phish->>DB: Log "Link Clicked" Event

 Phish->>Target: Render Landing Page

 Target->>Phish: POST / (submit credentials)

 Phish->>DB: Log "Data Submitted" Event

 Phish->>Target: Redirect to legitimate site

 Admin->>UI: View Results

 UI->>API: GET /api/campaigns/1/results

 API->>DB: Query Results

 DB->>API: Return Results

 API->>UI: Display Results

 UI->>Admin: Show Dashboard

AWS Architecture

Single Region Deployment (Recommended for Most Use Cases)

graph TB

 subgraph "AWS Cloud - us-east-1"

 subgraph "VPC - 10.0.0.0/16"

 subgraph "Public Subnet 1 - AZ1 - 10.0.1.0/24"

 ALB1[Application Load Balancer]

 NAT1[NAT Gateway]

 end

 subgraph "Public Subnet 2 - AZ2 - 10.0.2.0/24"

 ALB2[ALB - Standby]

 NAT2[NAT Gateway]

 end

 subgraph "Private Subnet 1 - AZ1 - 10.0.10.0/24"

 Admin1[Admin Server
EC2 t3.medium]

 Phish1[Phish Server
EC2 t3.small]

 end

 subgraph "Private Subnet 2 - AZ2 - 10.0.11.0/24"

 Admin2[Admin Server
EC2 t3.medium]

 Phish2[Phish Server
EC2 t3.small]

 end

 subgraph "Database Subnet 1 - AZ1 - 10.0.20.0/24"

 RDS1[(RDS MySQL
Primary)]

 end

 subgraph "Database Subnet 2 - AZ2 - 10.0.21.0/24"

 RDS2[(RDS MySQL
Standby)]

 end

 end

 R53[Route 53
DNS]

 S3[S3 Bucket
Static Assets]

 SES[Amazon SES
Email Sending]

 CW[CloudWatch
Monitoring]

 Secrets[Secrets Manager
Credentials]

 R53 -->|DNS Resolution| ALB1

 ALB1 --> Admin1

 ALB1 --> Admin2

 ALB1 --> Phish1

 ALB1 --> Phish2

 Admin1 --> RDS1

 Admin2 --> RDS1

 Phish1 --> RDS1

 Phish2 --> RDS1

 RDS1 -.->|Replication| RDS2

 Admin1 --> S3

 Admin2 --> S3

 Admin1 --> SES

 Admin2 --> SES

 Admin1 --> Secrets

 Admin2 --> Secrets

 Phish1 --> Secrets

 Phish2 --> Secrets

 Admin1 --> CW

 Admin2 --> CW

 Phish1 --> CW

 Phish2 --> CW

 RDS1 --> CW

 Admin1 --> NAT1

 Admin2 --> NAT2

 end

 Internet((Internet))

 AdminUser[Security Admin]

 TargetUser[Phishing Target]

 Internet --> R53

 AdminUser -.->|HTTPS :443| Internet

 TargetUser -.->|HTTP/HTTPS| Internet

 style RDS1 fill:#f9d5e5

 style RDS2 fill:#f9d5e5

 style SES fill:#eeeeee

 style S3 fill:#eeeeee

 style Admin1 fill:#bbdefb

 style Admin2 fill:#bbdefb

 style Phish1 fill:#ffccbc

 style Phish2 fill:#ffccbc

AWS Architecture - Detailed Component Description

Networking:

VPC: Isolated virtual network (10.0.0.0/16)

Public Subnets: Host ALB and NAT Gateways (10.0.1.0/24, 10.0.2.0/24)
Private Subnets: Host application servers (10.0.10.0/24, 10.0.11.0/24)

Database Subnets: Host RDS instances (10.0.20.0/24, 10.0.21.0/24)

Multi-AZ: High availability across 2 Availability Zones

Compute:

Admin Servers: t3.medium EC2 instances (2 vCPU, 4GB RAM)

Phish Servers: t3.small EC2 instances (2 vCPU, 2GB RAM)

Auto Scaling: Optional Auto Scaling Groups for dynamic scaling
AMI: Custom AMI with Gophish pre-installed

Load Balancing:

Application Load Balancer: Layer 7 load balancing

Listener 1: Port 443 → Admin Servers (Target Group 1)

Listener 2: Port 80/443 → Phish Servers (Target Group 2)
Health Checks: HTTP health checks every 30 seconds

Sticky Sessions: Session affinity for admin interface

Database:

RDS MySQL: Managed database service

Instance: db.t3.medium (2 vCPU, 4GB RAM)
Storage: 100GB GP3 SSD

Multi-AZ: Automatic failover to standby
Backup: Daily automated backups, 7-day retention

Encryption: At rest and in transit

Email:

Amazon SES: Managed email sending service

High deliverability
Bounce and complaint handling

DKIM/SPF configuration
Sending limits: 50,000 emails/day (adjustable)

Storage:

S3 Bucket: Static assets, templates, exports
Encryption: Server-side encryption (SSE-S3)

Versioning: Enabled
Lifecycle: Expire old exports after 90 days

Security:

Secrets Manager: Store database credentials, API keys
Security Groups:

ALB: Allow 80, 443 from 0.0.0.0/0
Admin: Allow 3333 from ALB only

Phish: Allow 80 from ALB only

RDS: Allow 3306 from Admin/Phish only
IAM Roles: EC2 instances use IAM roles (no keys)

Network ACLs: Additional network layer security

Monitoring:

CloudWatch: Metrics, logs, alarms

CPU, memory, disk, network metrics
Application logs

RDS performance insights

Custom metrics (campaigns, emails sent)
CloudWatch Alarms: Alert on anomalies

SNS: Notifications to administrators

DNS:

Route 53: DNS management

A record: gophish.example.com → ALB
A record: phish.example.com → ALB

Health checks: Monitor endpoint availability

AWS Architecture - Small/Medium Deployment (Cost-Optimized)

graph TB

 subgraph "AWS Cloud - us-east-1"

 subgraph "VPC - 10.0.0.0/16"

 subgraph "Public Subnet - 10.0.1.0/24"

 ALB[Application Load Balancer]

 end

 subgraph "Private Subnet - 10.0.10.0/24"

 EC2[Gophish All-in-One
EC2 t3.small
Admin + Phish

 end

 end

 R53[Route 53]

 SES[Amazon SES]

 CW[CloudWatch]

 R53 --> ALB

 ALB --> EC2

 EC2 --> SES

 EC2 --> CW

 end

Specifications:

Single EC2 instance: t3.small (2 vCPU, 2GB RAM)
SQLite database: Local storage

Cost: ~$20-30/month
Suitable for: Up to 2,000 users

AWS Architecture - Enterprise HA Deployment

graph TB

 subgraph "AWS Cloud"

 subgraph "Region 1 - us-east-1 PRIMARY"

 R53_1[Route 53
Failover Primary]

 subgraph "VPC 1"

 ALB1[ALB]

 ASG1[Auto Scaling Group
Admin Servers 2-10]

 ASG2[Auto Scaling Group
Phish Servers 2-10]

 RDS1[(RDS Multi-AZ
Primary)]

 ElastiCache1[ElastiCache Redis
Session Store]

 end

 end

 subgraph "Region 2 - us-west-2 DR"

 R53_2[Route 53
Failover Secondary]

 subgraph "VPC 2"

 ALB2[ALB]

 ASG3[Auto Scaling Group
Admin Servers]

 ASG4[Auto Scaling Group
Phish Servers]

 RDS2[(RDS Read Replica
Promoted on Failover)]

 ElastiCache2[ElastiCache Redis]

 end

 end

 Internet((Internet))

 Users[Users]

 Internet --> R53

 Users --> Internet

 style EC2 fill:#90caf9

 S3[S3 Bucket
Cross-Region Replication]

 RDS1 -.->|Cross-Region Replication| RDS2

 ElastiCache1 -.->|Global Datastore| ElastiCache2

 R53_1 --> ALB1

 R53_2 --> ALB2

 ALB1 --> ASG1

 ALB1 --> ASG2

 ALB2 --> ASG3

 ALB2 --> ASG4

 ASG1 --> RDS1

 ASG2 --> RDS1

 ASG1 --> ElastiCache1

 ASG3 --> RDS2

 ASG4 --> RDS2

 ASG3 --> ElastiCache2

 ASG1 --> S3

 ASG3 --> S3

 end

 Internet((Internet))

 Internet --> R53_1

 style RDS1 fill:#f48fb1

 style RDS2 fill:#f48fb1

 style ElastiCache1 fill:#ce93d8

 style ElastiCache2 fill:#ce93d8

Features:

Multi-Region: Primary and DR regions
Auto Scaling: Dynamic scaling based on load

Session Store: Redis for distributed sessions
Cross-Region Replication: Database and S3

Automatic Failover: Route 53 health check based

Cost: ~$1,000-3,000/month
Suitable for: 50,000+ users, mission-critical deployments

Azure Architecture

Single Region Deployment (Recommended)

graph TB

 subgraph "Azure Cloud - East US"

 subgraph "Resource Group - gophish-prod"

 subgraph "Virtual Network - 10.0.0.0/16"

 subgraph "Subnet - Application - 10.0.1.0/24"

 AGW[Application Gateway
WAF Enabled]

 end

 subgraph "Subnet - Admin - 10.0.10.0/24"

 VMSS1[VM Scale Set
Admin Servers
Standard_B2s

 end

 subgraph "Subnet - Phish - 10.0.11.0/24"

 VMSS2[VM Scale Set
Phish Servers
Standard_B2s

 end

 subgraph "Subnet - Database - 10.0.20.0/24"

 MySQL[(Azure Database
for MySQL
Flexible Serv

 end

 end

 DNS[Azure DNS
gophish.example.com]

 Storage[Azure Blob Storage
Static Assets]

 KV[Key Vault
Secrets]

 Monitor[Azure Monitor
Log Analytics]

 NSG[Network Security Groups]

 end

 SendGrid[SendGrid
Email Service]

 end

 Internet((Internet))

 AdminUser[Security Admin]

 TargetUser[Phishing Target]

 Internet --> DNS

 DNS --> AGW

 AGW --> VMSS1

Azure Architecture - Detailed Component Description

Networking:

Virtual Network: Isolated network (10.0.0.0/16)

Subnets:
Application Gateway: 10.0.1.0/24

Admin Servers: 10.0.10.0/24

Phish Servers: 10.0.11.0/24
Database: 10.0.20.0/24

Network Security Groups: Subnet-level firewall rules
Azure Firewall: Optional for enhanced security

Compute:

VM Scale Sets: Auto-scaling virtual machine groups
Admin VMSS: Standard_B2s (2 vCPU, 4GB RAM)

Phish VMSS: Standard_B2s (2 vCPU, 4GB RAM)

 AGW --> VMSS2

 VMSS1 --> MySQL

 VMSS2 --> MySQL

 VMSS1 --> Storage

 VMSS1 --> KV

 VMSS2 --> KV

 VMSS1 --> SendGrid

 VMSS1 --> Monitor

 VMSS2 --> Monitor

 MySQL --> Monitor

 NSG -.->|Firewall Rules| VMSS1

 NSG -.->|Firewall Rules| VMSS2

 NSG -.->|Firewall Rules| MySQL

 AdminUser --> Internet

 TargetUser --> Internet

 style MySQL fill:#f9d5e5

 style Storage fill:#e1bee7

 style VMSS1 fill:#bbdefb

 style VMSS2 fill:#ffccbc

Min instances: 2

Max instances: 10
Scale based on CPU/memory/custom metrics

Load Balancing:

Application Gateway: Layer 7 load balancer

WAF enabled (Web Application Firewall)

SSL termination
Path-based routing:

/admin → Admin VMSS
/* → Phish VMSS

Health probes

Session affinity (cookie-based)

Database:

Azure Database for MySQL: Managed PaaS database
Flexible Server tier

General Purpose: 2 vCores, 8GB RAM

Storage: 100GB SSD
Backup: Automated daily backups, 7-day retention

High Availability: Zone-redundant HA
Encryption: At rest and in transit

Firewall: Allow Azure services only

Email:

SendGrid: Integrated email service

Azure Marketplace integration
DKIM/SPF configuration

Bounce and complaint handling
Alternative: Use custom SMTP

Storage:

Azure Blob Storage: Object storage
Hot tier for active data

Container: gophish-assets (private)
Encryption: Microsoft-managed keys

Lifecycle management: Archive old data

Security:

Key Vault: Secure secret storage

Database credentials

API keys
Certificates

Managed identities for VM access (no credentials)
NSGs: Network security rules

App Gateway: Allow 80, 443 from Internet

Admin VMSS: Allow 3333 from App Gateway
Phish VMSS: Allow 80 from App Gateway

MySQL: Allow 3306 from VMSS only
Azure AD: Identity and access management

RBAC: Role-based access control for Azure resources

Monitoring:

Azure Monitor: Comprehensive monitoring

Metrics: CPU, memory, disk, network
Logs: Application and system logs

Alerts: Automated alerts on thresholds

Dashboards: Custom monitoring dashboards
Application Insights: Application performance monitoring

Log Analytics: Centralized log management

DNS:

Azure DNS: DNS hosting
A record: gophish.example.com → Application Gateway IP

CNAME: phish.example.com → gophish.example.com

TTL: 300 seconds

Backup & DR:

Azure Backup: VM and database backups
Geo-Redundant Storage: Cross-region replication

Azure Site Recovery: Disaster recovery orchestration

Azure Architecture - Small/Medium Deployment (Cost-Optimized)

graph TB

 subgraph "Azure Cloud - East US"

 subgraph "Resource Group"

 VNet[Virtual Network]

 VM[Single VM
Standard_B2s
All-in-One Server]

 MySQL[(Azure Database
for MySQL
Basic Tier)]

 NSG[Network Security Group]

 end

 DNS[Azure DNS]

 DNS --> VM

 VM --> MySQL

 NSG --> VM

 end

 Internet((Internet))

 Internet --> DNS

 style VM fill:#90caf9

 style MySQL fill:#f9d5e5

Specifications:

Single VM: Standard_B2s (2 vCPU, 4GB RAM)
Database: Azure Database for MySQL - Basic tier

Cost: ~$50-80/month
Suitable for: Up to 2,000 users

Azure Architecture - Enterprise HA Deployment

graph TB

 subgraph "Azure"

 TM[Traffic Manager
Priority Routing]

 subgraph "Primary Region - East US"

 subgraph "Availability Zone 1"

 AGW1[App Gateway]

 VMSS1[Admin VMSS]

 VMSS2[Phish VMSS]

 end

 subgraph "Availability Zone 2"

 AGW1_AZ2[App Gateway]

 VMSS1_AZ2[Admin VMSS]

 VMSS2_AZ2[Phish VMSS]

 end

 MySQL1[(Azure MySQL
Zone-Redundant HA)]

 Redis1[Azure Cache
for Redis]

 end

 subgraph "DR Region - West US"

 AGW2[App Gateway]

 VMSS3[Admin VMSS]

 VMSS4[Phish VMSS]

 MySQL2[(MySQL
Read Replica)]

 Redis2[Redis Replica]

 end

 Storage[Geo-Redundant
Storage Account]

 TM --> AGW1

 TM -.->|Failover| AGW2

 AGW1 --> VMSS1

 AGW1 --> VMSS2

 AGW1_AZ2 --> VMSS1_AZ2

 AGW1_AZ2 --> VMSS2_AZ2

 VMSS1 --> MySQL1

 VMSS2 --> MySQL1

 VMSS1 --> Redis1

 AGW2 --> VMSS3

 AGW2 --> VMSS4

 VMSS3 --> MySQL2

 VMSS4 --> MySQL2

 VMSS3 --> Redis2

 MySQL1 -.->|Geo-Replication| MySQL2

 Redis1 -.->|Geo-Replication| Redis2

 VMSS1 --> Storage

 VMSS3 --> Storage

 end

 style MySQL1 fill:#f48fb1

 style MySQL2 fill:#f48fb1

 style Redis1 fill:#ce93d8

 style Redis2 fill:#ce93d8

Features:

Multi-Region: Primary (East US) and DR (West US)
Availability Zones: Within primary region

Traffic Manager: Global load balancing and failover
Zone-Redundant HA: Database and cache

Geo-Replication: Cross-region data replication

Cost: ~$1,500-4,000/month
Suitable for: 50,000+ users, enterprise deployments

Component Details

Admin Server Component

Purpose: Provides administrative interface and API

Specifications:

CPU: 2 cores minimum, 4 cores recommended

Memory: 4GB minimum, 8GB recommended
Storage: 20GB OS + database storage

Network: Private subnet, load balancer access only

Software:

OS: Ubuntu 20.04 LTS or Amazon Linux 2

Runtime: Gophish binary (no dependencies)
Service: systemd service for auto-start

Reverse Proxy: Optional Nginx for additional features

Configuration:

{

 "admin_server": {

 "listen_url": "0.0.0.0:3333",

 "use_tls": true,

 "cert_path": "/etc/gophish/cert.pem",

 "key_path": "/etc/gophish/key.pem"

 },

 "phish_server": {

 "listen_url": "0.0.0.0:80"

 },

 "db_name": "mysql",

 "db_path": "user:pass@tcp(rds-endpoint:3306)/gophish"

}

Health Check:

Endpoint: GET /health

Interval: 30 seconds

Timeout: 5 seconds
Healthy Threshold: 2 consecutive successes

Unhealthy Threshold: 3 consecutive failures

Phish Server Component

Purpose: Serves landing pages and tracks interactions

Specifications:

CPU: 1-2 cores

Memory: 2GB minimum, 4GB recommended

Storage: 10GB OS
Network: Public subnet (via load balancer)

Software:

OS: Ubuntu 20.04 LTS or Amazon Linux 2

Runtime: Gophish binary (phish mode only)

Configuration:

./gophish --mode phish --config /etc/gophish/config.json

Scaling:

Horizontal scaling: Add more phish servers behind load balancer
Stateless: No session state, fully scalable

Connection draining: 300 seconds for graceful shutdown

Database Component

Schema Overview:

Core Tables:

1. users - Admin users and authentication
2. campaigns - Campaign definitions

3. templates - Email templates
4. pages - Landing pages

5. groups - Target groups

6. targets - Individual recipients
7. results - Campaign results per recipient

8. events - Detailed event log
9. smtp - SMTP sending profiles

Performance Tuning:

MySQL Configuration:

[mysqld]

innodb_buffer_pool_size = 2G

innodb_log_file_size = 512M

max_connections = 500

query_cache_size = 64M

Indexes:

campaigns(user_id, created_date)

results(campaign_id, status)

events(campaign_id, time)

targets(group_id, email)

Backup Strategy:

Automated Backups: Daily at 2 AM UTC
Retention: 7 days point-in-time recovery

Backup Validation: Weekly restore test
Export Backups: Monthly full export to S3/Blob Storage

Security Architecture

Network Security Architecture

graph TB

 subgraph "Internet Boundary"

 Internet((Internet))

 WAF[Web Application Firewall]

 end

 subgraph "DMZ - Public Subnet"

 LB[Load Balancer
SSL Termination]

 Bastion[Bastion Host
Jump Box]

 end

 subgraph "Application Tier - Private Subnet"

 Admin[Admin Servers]

 Phish[Phish Servers]

 end

 subgraph "Data Tier - Private Subnet"

 DB[(Database)]

 Cache[(Cache)]

 end

 subgraph "Management"

 VPN[VPN Gateway]

 Monitoring[Monitoring]

 end

 Internet --> WAF

 WAF --> LB

 LB --> Admin

 LB --> Phish

 Admin --> DB

 Phish --> DB

 Admin --> Cache

 VPN -.->|SSH| Bastion

 Bastion -.->|SSH| Admin

 Bastion -.->|SSH| Phish

 Admin --> Monitoring

 Phish --> Monitoring

 DB --> Monitoring

 style Internet fill:#ffcdd2

 style WAF fill:#fff9c4

 style DB fill:#c8e6c9

 style Cache fill:#c8e6c9

Security Layers

Layer 1: Network Security

VPC/VNet isolation

Private subnets for application and database
Security groups/NSGs with least privilege

No direct Internet access to application servers

NAT Gateway for outbound traffic only

Layer 2: Application Security

TLS 1.2+ for all connections
Certificate-based authentication

API key rotation

Rate limiting
Input validation and sanitization

Layer 3: Data Security

Encryption at rest (database and storage)

Encryption in transit (TLS)

Secure password hashing (bcrypt)
Database firewall rules

Secrets management (AWS Secrets Manager / Azure Key Vault)

Layer 4: Access Control

Role-based access control (RBAC)
Multi-factor authentication (planned)

Principle of least privilege

Audit logging
Session management

Layer 5: Monitoring & Response

Security event logging

Anomaly detection

Intrusion detection
Automated alerting

Incident response procedures

Security Group / NSG Rules

Admin Server Security Group:

Inbound:

- Allow TCP 3333 from Load Balancer Security Group

- Allow TCP 22 from Bastion Host (management only)

Outbound:

- Allow TCP 3306 to Database Security Group

- Allow TCP 587 to 0.0.0.0/0 (SMTP)

- Allow TCP 443 to 0.0.0.0/0 (webhooks, updates)

Phish Server Security Group:

Inbound:

- Allow TCP 80 from Load Balancer Security Group

- Allow TCP 22 from Bastion Host (management only)

Outbound:

- Allow TCP 3306 to Database Security Group

- Allow TCP 443 to 0.0.0.0/0 (webhooks)

Database Security Group:

Inbound:

- Allow TCP 3306 from Admin Server Security Group

- Allow TCP 3306 from Phish Server Security Group

Outbound:

- Deny all (database shouldn't initiate outbound)

Load Balancer Security Group:

Inbound:

- Allow TCP 443 from 0.0.0.0/0 (admin interface)

- Allow TCP 80 from 0.0.0.0/0 (phishing pages)

- Allow TCP 443 from 0.0.0.0/0 (phishing pages, optional)

Outbound:

- Allow TCP 3333 to Admin Server Security Group

- Allow TCP 80 to Phish Server Security Group

High Availability Architecture

HA Requirements

Availability Targets:

Uptime: 99.9% (8.76 hours downtime/year)
RTO (Recovery Time Objective): < 15 minutes

RPO (Recovery Point Objective): < 5 minutes

HA Components

Application Tier HA:

Multiple instances behind load balancer
Health checks with automatic failover

Auto-scaling for capacity

Graceful connection draining

Database Tier HA:

Multi-AZ deployment (primary + standby)
Automatic failover (< 2 minutes)

Read replicas for scaling

Point-in-time recovery

Network Tier HA:

Multi-AZ load balancer
Multiple NAT Gateways

Redundant VPN connections

Failure Scenarios & Response

graph TB

 subgraph "Failure Detection"

 HC[Health Check
Failure]

 Monitor[Monitoring
Alert]

 end

 subgraph "Automated Response"

 LB[Load Balancer
Removes Instance]

 ASG[Auto Scaling
Launches Replacement]

 DB_Failover[Database
Automatic Failover]

 end

 subgraph "Manual Response"

 Alert[Alert
Operations Team]

 Investigate[Investigate
Root Cause]

 Remediate[Remediate
Issue]

 end

 HC --> LB

 HC --> ASG

 Monitor --> Alert

 LB --> |Instance Unhealthy| ASG

 ASG --> |Launch New Instance| HC

 Monitor --> DB_Failover

 DB_Failover --> Alert

 Alert --> Investigate

 Investigate --> Remediate

 style HC fill:#ffcdd2

 style LB fill:#fff9c4

 style ASG fill:#c8e6c9

Scenario 1: Single Server Failure

Detection: Health check fails after 3 attempts (~90 seconds)
Response: Load balancer stops routing traffic

Recovery: Auto-scaling launches new instance (~5 minutes)
Impact: No user impact, traffic served by remaining instances

Scenario 2: Database Failure

Detection: Database health check fails
Response: Automatic failover to standby (AWS RDS / Azure MySQL)

Recovery: < 2 minutes
Impact: Brief connection errors, applications reconnect automatically

Scenario 3: Availability Zone Failure

Detection: All instances in AZ fail health checks

Response: Traffic routed to instances in other AZ

Recovery: Immediate
Impact: No user impact if multi-AZ deployed

Scenario 4: Region Failure (DR)

Detection: Regional health check fails

Response: Manual or automatic failover to DR region

Recovery: 15-30 minutes (depending on automation)
Impact: Brief outage during DNS propagation

Network Architecture

DNS Configuration

Primary Domain: gophish.example.com

Type: A

Name: gophish.example.com

Value: [Load Balancer IP/DNS]

TTL: 300

Phishing Domain: phish.example.com

Type: CNAME

Name: phish.example.com

Value: gophish.example.com

TTL: 300

Email Domain:

Type: MX

Name: example.com

Value: 10 mail.example.com

TTL: 3600

Type: TXT (SPF)

Name: example.com

Value: "v=spf1 include:_spf.google.com ~all"

Type: TXT (DKIM)

Name: default._domainkey.example.com

Value: "v=DKIM1; k=rsa; p=[public key]"

Type: TXT (DMARC)

Name: _dmarc.example.com

Value: "v=DMARC1; p=quarantine; rua=mailto:dmarc@example.com"

SSL/TLS Configuration

Certificate Sources:

Let's Encrypt (free, automated)

AWS Certificate Manager (AWS deployments)
Azure Key Vault (Azure deployments)

Commercial CA (extended validation)

TLS Best Practices:

TLS 1.2 minimum, TLS 1.3 preferred

Strong cipher suites only
Perfect Forward Secrecy (PFS)

HTTP Strict Transport Security (HSTS)

Certificate pinning (optional)

Database Architecture

Database Sizing

Small Deployment (< 2,000 users):

SQLite3: Local file, 1-2GB

No separate database server needed
Backup: File-level backups

Medium Deployment (2,000-10,000 users):

MySQL: db.t3.medium (2 vCPU, 4GB RAM)

Storage: 100GB SSD

Connections: 200 max
Single AZ acceptable

Large Deployment (10,000-50,000 users):

MySQL: db.r5.large (2 vCPU, 16GB RAM)

Storage: 500GB SSD
Connections: 500 max

Multi-AZ required
Read replicas: 1-2

Enterprise Deployment (50,000+ users):

MySQL: db.r5.xlarge+ (4+ vCPU, 32+ GB RAM)
Storage: 1TB+ SSD

Connections: 1000 max
Multi-AZ required

Read replicas: 2-4

Database clustering (Aurora MySQL)

Database Maintenance

Regular Tasks:

Daily: Automated backups

Weekly: Backup validation, log review

Monthly: Performance tuning, index optimization
Quarterly: Capacity planning, upgrade planning

Annually: DR test, security audit

Performance Monitoring:

Query execution time
Slow query log

Connection pool usage

Disk I/O
Replication lag

Table locks

Scaling Considerations

Horizontal Scaling

Application Tier:

Add more admin/phish server instances

Configure auto-scaling based on:

CPU utilization (> 70%)
Memory utilization (> 80%)

Request count (> 1000/min per instance)
Custom metrics (campaigns running)

Example Auto-Scaling Policy (AWS):

Target Tracking:

 Metric: Average CPU Utilization

 Target: 70%

 Min Instances: 2

 Max Instances: 10

 Cooldown: 300 seconds

Vertical Scaling

When to Scale Up:

Consistently high resource usage

Database performance degradation

Increased storage requirements

Scaling Strategy:

1. Monitor performance metrics
2. Identify bottleneck (CPU, memory, I/O)

3. Schedule maintenance window
4. Upgrade instance size

5. Validate performance improvement

Performance Optimization

Application Level:

Database query optimization
Connection pooling

Caching frequently accessed data

Asynchronous processing (email sending)
Load balancer session affinity

Database Level:

Proper indexing

Query optimization
Read replicas for reporting

Partitioning large tables
Archive old campaign data

Network Level:

CDN for static assets (optional)
Compression (gzip)

Connection keep-alive
Optimal MTU settings

Cost Estimation

AWS Cost Estimates

Small Deployment:

EC2 (1x t3.small): $15/month
RDS MySQL (db.t3.micro): $15/month

Load Balancer: $20/month

Data Transfer: $10/month
Total: ~$60/month

Medium Deployment:

EC2 (2x t3.medium): $60/month

RDS MySQL (db.t3.medium): $60/month

Load Balancer: $20/month
S3, CloudWatch: $20/month

Data Transfer: $30/month
Total: ~$190/month

Large HA Deployment:

EC2 (4x t3.large): $240/month
RDS MySQL Multi-AZ (db.r5.large): $320/month

Load Balancer: $40/month
ElastiCache Redis: $50/month

S3, CloudWatch: $50/month
Data Transfer: $100/month

Total: ~$800/month

Azure Cost Estimates

Small Deployment:

VM (1x Standard_B2s): $30/month
MySQL Basic: $25/month

Load Balancer: $20/month

Total: ~$75/month

Medium Deployment:

VM (2x Standard_B2ms): $90/month
MySQL General Purpose: $130/month

Application Gateway: $150/month

Storage, Monitoring: $30/month
Total: ~$400/month

Large HA Deployment:

VM Scale Sets (4-10 instances): $400/month

MySQL Zone-Redundant HA: $450/month

Application Gateway: $150/month
Redis Cache: $100/month

Storage, Monitoring: $100/month
Total: ~$1,200/month

Deployment Checklist

Pre-Deployment

 Architecture design reviewed and approved

 Sizing calculations completed
 Cost estimation and budget approval

 DNS domains registered

 SSL certificates obtained
 Cloud accounts configured

 Network design documented
 Security requirements defined

 Compliance requirements identified

 Monitoring plan created

 Backup and DR plan documented

Deployment

 VPC/VNet created with subnets
 Security groups/NSGs configured

 Database instance deployed

 Database initialized and secured
 Application servers deployed

 Gophish installed and configured
 Load balancer configured

 DNS records created

 SSL certificates installed
 Monitoring configured

 Logging configured
 Backups configured

 Auto-scaling configured (if applicable)

Post-Deployment

 Smoke tests passed

 Load testing completed
 Security scan completed

 Backup tested and validated
 DR procedure tested

 Documentation updated

 Team trained on operations
 Monitoring alerts configured

 Runbooks created
 Go-live approval obtained

Conclusion

This technical architecture document provides comprehensive guidance for deploying Gophish in

secure, scalable, and highly available configurations across AWS and Azure platforms. The
architectures can be adapted based on specific organizational requirements, scale, and budget

constraints.

Key takeaways:

Start with simpler architectures and scale as needed

Security should be built in from the start
High availability requires investment but provides resilience

Regular monitoring and maintenance are essential
Cost optimization is an ongoing process

Document Version: 1.0

Last Updated: 2025-11-05

Author: Technical Architecture Team

